Data Mining

Corso di Laurea Magistrale in Scienze Statistiche ed Economiche, Università degli Studi di Milano-Bicocca, A.A. 2022/23.

Calendario delle lezioni.

Lunedì inizio 15:30

Mercoledì inizio 14:45

Giovedì inizio 11:30

Materiale didattico

ARGOMENTI MATERIALE DIDATTICO LIBRO DI TESTO ESERCIZI
Introduction. SLIDES.
A simple problem. SLIDES. R CODE AS §3.2 Vedi slide.
Bias-variance tradeoff. SLIDES. R CODE AS §3.3, §4.1, HTF §2.3, §2.9, §7.2, §7.3 AS Exercises 3.1, 3.2, 3.3.
Optimism. SLIDES. R CODE AS §3.4, §3.5.1, §3.5.2, §3.5.3 HTF §7.4, §7.5 AS Exercise 3.4.
Computational aspects. SLIDES. R CODE AS §2.2.1, §2.2.2, §2.2.3 HTF §3.2.3, LKA §2.3, §2.5, §2.6 HTF ex. 3.4
Modelling Process. SLIDES.
Auto dataset. SLIDES. R CODE AS §1.2.1, §1.2.2 Not mtcars AGAIN
Titanic dataset. SLIDES. R CODE
Netflix dataset. SLIDES. R CODE AS §2.1.3, ISL §12.3 Vedi slide.
Orange dataset. SLIDES. R CODE KJ §5.4, §8.4 Vedi slide.
Regression splines. SLIDES. R CODE AS §4.4.1, §4.4.2, LKA §4.5, §4.7, HTF § 5.1, §5.2 §A.B HTF Ex. 5.5
Additive models. SLIDES. R CODE AS § 4.5, LKA § 6.3, HTF § 9.1.1, 9.1.2 GAMs in R
Best subset selection. SLIDES. R CODE AS § 3.6.1, HTF § 3.3, § 7.10.2 Vedi slide.
Ensemble of models. SLIDES. R CODE HTF § 8.8 Vedi slide.
Comparing models SLIDES. R CODE TMWR § 11.1, § 11.2, § 11.3

Modalità d’esame.

Calendario degli esami.

Sessione Data Luogo Orario
Invernale 9 Febbraio 2023 U7-13 14:00
Invernale 1 Marzo 2023 U7-13 14:00
Primaverile - - -
Estiva - - -
Estiva - - -
Estiva - - -

Testi di riferimento.

Approfondimenti :

  • Azzalini, Scarpa (2004). Analisi dei dati e data mining, Springer-Verlag Italia.

  • Lewis, Kane, Arnold (2019). A Computational Approach to Statistical Learning. Chapman And Hall/Crc. [LKA].

  • Kuhn, Johnson (2019). Feature Engineering and Selection. Chapman and Hall/CRC. [KJ].

  • Kuhn, Silge (2022). Tidy Modeling with R. O’Reilly Media, Inc. [KS].