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Null hypotheses

Suppose we have data y = (y1, . . . , yn) and a null hypothesis H0

concerning their distribution FY(y) = pr(Y ≤ y). It is required to
examine the consistency of the data with H0.

H0 is said to be simple if it completely specifies FY(y) and otherwise
composite, e.g.
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von Bortkiewicz’s horse-kicks data

The table shows how many Prussian Militärpersonen died from
horse-kicks in each of the 10 corps in each of the 20 successive years
1875 to 1894.

Deaths 0 1 2 3 4
Frequency 109 65 22 3 1

n = 200 observations, 122 deaths, average 122/200 = 0.61

i) Suppose Y1, . . . , Yn i.i.d. Poisson(θ). Test H0 : θ = θ0 = 0.507 and
construct a 95% confidence interval for θ.

ii) Test H0 : Y1, . . . , Yn i.i.d. Poisson(θ)



Likelihood

X =
∑n

i=1 Yi ∼ Poisson(λ) where λ = nθ

Null hypothesis H0 : λ = λ0 = nθ0

Maximum likelihood estimator for λ: λ̂ = x

Log likelihood

ℓ(λ) = ℓ(λ; x) = log(λ)x− λ− log(x!)

with ∂ℓ(λ)

∂λ
=

x
λ
− 1



Source: Cox (2006) Principles of Statistical Inference.
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TE =
λ̂− λ0√

λ̂
≈ N(0, 1) (Wald)

TU =
λ̂− λ0√

λ0
≈ N(0, 1) (score or Rao)

TL = 2[ℓ(λ̂)− ℓ(λ0)] ≈ χ2
1 (likelihood ratio or Wilks)

p-value for H0 : θ = 0.507 95% confidence interval for θ
Wald 0.0622 [0.5018, 0.7182]
Score 0.0408 [0.5109, 0.7283]

Likelihood ratio 0.0475 [0.5081, 0.7247]
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Likelihood ratio (1− α) confidence interval
{λ ≥ 0 : ℓ(λ̂)− ℓ(λ) ≤ cα/2}

where cα is the (1− α) quantile of χ2
1



poisson.test(x = 122, T = 200, r = 0.507, conf.level = 0.95)

Exact Poisson test

data: t time base: n
number of events = 122, time base =
200, p-value = 0.04672
alternative hypothesis: true event rate is not equal to 0.507
95 percent confidence interval:
0.5065681 0.7283408

sample estimates:
event rate

0.61



p-value

Consider a simple H0.

Let t = t(y) be a function of the observations and T = t(Y) be the
corresponding random variable. We call T a test statistic for testing
H0.

Suppose the larger the value of t, the stronger the evidence against
H0.

Then if tobs = t(y) is the observed value of T, we define

pobs = pr0(T ≥ tobs) = pr(T ≥ tobs;H0)

the probability being evaluated under H0, to be the (observed)
p-value of the test



von Bortkiewicz’s horse-kicks data:

There are many possible test statistics that might be used, for
example T = max(Y1, . . . , Yn) with

prθ(T ≤ t) = Γ(t+ 1, θ)n/Γ(t+ 1)n

where Γ(·, ·) is the incomplete Gamma function. Given tobs = 5 and
H0 : θ = θ0 = 0.507, we obtain

pobs = prθ0(T ≥ tobs) = 0.3083

A preference for sufficient statistics leads to T =
∑n

i=1 Yi with
T ∼ Poisson(nθ). Given tobs = 122 and H0 : θ = θ0 = 0.507, we
obtain

pobs = prθ0(T ≥ tobs) =
∞∑

t=122

0.507te−0.507

t!
= 0.0255



p-value null distribution

Suppose that T has null cdf F(t) = pr0(T ≤ t) continuous and
invertible.

Then pobs = 1− F(tobs) and the corresponding random variable
P = 1− F(T) has standard uniform distribution. Given u ∈ [0, 1],

pr0(P ≤ u) = pr0(1− F(T) ≤ u)

= pr0(1− u ≤ F(T))

= pr0(F
−1(1− u) ≤ T)

= 1− F(F−1(1− u)) = u

By symmetry, the probability integral transform U = F(T) = 1− P
also has a uniform distribution.

If T has a discrete null distribution, P is stochastically larger than
uniform, i.e. pr0(P ≤ u) ≤ u for every u ∈ [0, 1].



One- and two-sided tests
Often both large and small value of the test statistic are to be
regarded as evidence against H0.

Calculate one-sided p-values

p−obs = pr0(T ≤ tobs), p+obs = pr0(T ≥ tobs)

and define
Q = min(P+, P−)

as test statistic with p-value

pobs = pr0(Q ≤ qobs)

In the continuous case this is 2qobs; in a discrete problem it is qobs
plus the achievable p-value from the other tail of the distribution,
nearest to but not exceeding qobs

pobs =
{

p+obs + pr0(P− ≤ p+obs) if p+obs ≤ p.obs
p−obs + pr0(P+ ≤ p−obs) if p+obs ≥ p.obs



Suppose T ∼ Poisson(θ) and we want to test H0 : θ = θ0

p+obs = prθ0(T ≥ tobs) =
∞∑

t=tobs

θt0e
−θ0

t!

p−obs = prθ0(T ≤ tobs) =
tobs∑
t=0

θt0e
−θ0

t!

For θ0 = 2 and tobs = 3, pobs = min(0.323, 0.857) + 0.135 = 0.458

t 0 1 2 3 4 5
prθ0(T ≥ t) 1 0.865 0.594 0.323 0.143 0.053
prθ0(T ≤ t) 0.135 0.406 0.677 0.857 0.947 0.983



von Bortkiewicz’s horse-kicks data:

p+obs = 0.0255

p−obs = 0.9795

pobs = min(0.0255, 0.9795) + 0.0212 = 0.0467



Confidence sets by the inversion of a family of tests

Let θ be the parameter of interest, with θ ∈ Θ.

Compute pθ0 , a p-value testing Hθ0 : θ = θ0 for all θ0 ∈ Θ.

Assume that p-values are valid, i.e.

prθ(Pθ ≤ u) ≤ u ∀ u ∈ [0, 1], ∀ θ ∈ Θ.

A (1− α) confidence set for θ can be constructed by the inversion of
the family of tests, i.e.

Cα = {θ ∈ Θ : pθ > α}

Then
prθ(Cα ∋ θ) ≥ 1− α ∀ θ ∈ Θ

since prθ(θ /∈ Cα) = prθ(Pθ ≤ α) ≤ α.



Garwood confidence intervals for a Poisson mean

Let T ∼ Poisson(θ). Garwood (1936) confidence interval
Cα = [θα, θ̄α] is based on the inversion of the family of tests

pθ = min(1, 2min(p−θ , p
+
θ )), θ ≥ 0

Since p−θ and p+θ are monotonic functions of θ, the limits θα and θ̄α
are the solutions to

p+θα(tobs) = α/2

p−
θ̄α
(tobs) = α/2

Since p−θ (tobs) = 1− G2(tobs+1)(2θ) where Gv is the cdf of χ2 with v
degrees of freedom

[θα, θ̄α] = (χ2
2tobs,α/2

, χ2
2(tobs+1),1−α/2)/2



Blaker confidence intervals for a Poisson mean

Let T ∼ Poisson(θ). Blaker (2000) confidence interval Cα = [θα, θ̄α]
is based on the inversion of the family of tests

pθ = prθ(Qθ ≤ qθ), θ ≥ 0

where is Qθ = min(P−θ , P
+
θ ) and qθ = min(p−θ , p

+
θ )

Note that Blaker’s p-value is always smaller or equal to Garwood’s
p-value, giving shorter confidence intervals. This is because
Garwood’s confidence interval satisfies the stronger condition

prθ(θα > θ) ≤ α/2 and prθ(θ̄α < θ) ≤ α/2
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Table 4 in Fisher (1925) Statistical methods for research workers.
Oliver & Boyd



Test H0 : Y1, . . . , Yn i.i.d. Poisson(θ). We have that S =
∑n

i=1 Yi is a
sufficient statistic under H0.

The sufficiency principle suggests to examine the conditional
distribution of Y = (Y1, . . . , Yn) given S = s, i.e.

fY|S(y|s; θ) =

{
s!∏n

i=1 yi!
1
ns if

∑n
i=1 yi = s

0 if
∑n

i=1 yi ̸= s

which is the multinomial distribution corresponding to s trials with
equal probabilities (1/n, . . . , 1/n)



Because the multinomial distribution is completely specified, we are
testing a simple null hypothesis, but we need to choose a test statistic

The classical Pearson goodness of fit statistic

n∑
i=1

(Yi − E0(Yi|S))2
E0(Yi|S)

with E0(Yi|S) = S/n = Ȳ reduces to the index of dispersion

T =

∑n
i=1(Yi − Ȳ)2

Ȳ

A Poisson distribution is said to be overdispersed (underdispersed) if
its variance exceeds (is less than) its mean



The χ2
n−1 approximation for the null distribution of T may be

inaccurate.

Fisher (1950) advocated for the use of the conditional null
distribution of T. Calculations can be made by Algorithm AS 171 of
Frome (1982) or by using the following Monte Carlo approximation

Algorithm 1 Monte Carlo p-value
1: for b = 1, . . . , B do
2: y[b] = (y[b]1 , . . . , y[b]n ) ∼ Multinomial(s, (1/n, . . . , 1/n))
3: t[b] = t(y[b])
4: end for
5: tobs = t(y)

6: p+obs =
1 +

∑n
i=1 1{t[b] ≥ tobs}
B+ 1
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Darwin’s experiment

From: Davison (2003) Statistical Models. Cambridge University Press.

Charles Darwin collected data over a period of years on the heights
of Zea mays plants.

– Population: Zea mays plants
– Hypothesis: Height of a plant depends on the type of

fertilization.
– Experimental Design: The plants were descended from the same

parents and planted at the same time. Half of the plants were
self-fertilized, and half were cross-fertilized, and the purpose of
the experiment was to compare their heights (measured in
eighths of an inch). To this end Darwin planted them in pairs in
different pots.



Experimental Design (cont’d)

The focus of interest is the relation between the height of a plant and
something that can be controlled by the experimenter, namely
whether it is self or cross-fertilized.

This means that you can regard the height as random with a
distribution that depends on the type of fertilization, which is fixed
for each plant.

Note that in order to minimize differences in humidity, growing
conditions, lighting, etc. Darwin had decided to plant the seeds in
pairs in the same pots. The height of a plant would therefore also
depend on these factors, which are not of interest, not only on the
type of fertilization.



Darwin’s data
Pot Cross Self

1 I 23.500 17.375
2 I 12.000 20.375
3 I 21.000 20.000
4 II 22.000 20.000
5 II 19.125 18.375
6 II 21.500 18.625
7 III 22.125 18.625
8 III 20.375 15.250
9 III 18.250 16.500
10 III 21.625 18.000
11 III 23.250 16.250
12 IV 21.000 18.000
13 IV 22.125 12.750
14 IV 23.000 15.500
15 IV 12.000 18.000



– Analysis plan: Define a statistical model, and be very specific
about the required assumptions. Specify the null hypothesis of
no fertilization effect

– Code: Write the code to get the results. Your code must be
replicable.

– Claim: Briefly comment your results



Galton’s specification

Galton assumed a model where the height of a self-fertilized plant is

Y = µ+ σε

and of a cross-fertilized plant is

X = µ+ θ + σϵ

where µ, θ and σ are unknown parameters, and ε and ϵ are
independent random variables with mean zero and unit variance.

Observations from self-fertilized plants Y1, . . . , Y15 are i.i.d. as Y, and
observations from cross-fertilized plants X1, . . . ,X15 are i.i.d. as X.
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If we assume that ϵi and εi have a N(0, 1) distribution, we can use a
two-sample t test

t = 2.4371, df = 28
p-value = 0.02141

95 percent confidence interval: [0.4173, 4.816]
estimates:
mean in group Cross mean in group Self

20.19167 17.57500



Fisher’s specification

(Xi, Yi) are the heights of ith pair (cross-fertilized, self-fertilized)

Consider the model

Xi = µi + θ + σϵi Yi = µi + σεi, i = 1, . . . , n

The parameter µi represents the effects of the planting conditions for
the ith pair, and εi and ϵi are independent random variables with
mean zero and unit variance.

The µi could be eliminated by using the differences

Zi = Xi − Yi

which have mean θ and variance 2σ2
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If we assume that ϵi and εi have a N(0, 1) distribution, we can use a
paired t test, or one-sample t test for the difference

H0 : θ = 0

t = 2.148, df = 14
p-value = 0.0497

95 percent confidence interval: [0.0039, 5.2294]
estimate: 2.616667



Test of symmetry

Tests where the null hypothesis is formulated in terms of arbitrary
distributions are called nonparametric or distribution-free tests

The hypothesis of no effect is then equivalent to the assumption that
the distribution FZ of the difference Z = X− Y is is symmetric about
zero

H0 : FZ(−z) + FZ(z) = 1

Under this hypothesis, all points z and −z have equal probability, so
that the sufficient statistic is determined by the order statistics of the
|zi|.

Further, conditionally on the sufficient statistic, all 2n sample points
±zi have equal probability 1/2n. Thus the distribution under the null
hypothesis of any test statistic is in principle exactly known.



Test of symmetry
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Wilcoxon signed-rank test
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where r1, . . . , rn are the ranks of |z1|, . . . , |zn|



Sign test
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