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The alternative hypothesis

The Neyman–Pearson formulation of hypothesis testing requires to
fix the probability of rejecting H0 when it is true, denoted by α,
aiming to maximize the probability of rejecting H1 when false.

This approach demands the explicit formulation of the alternative
hypothesis H1.

The decision procedure, i.e. rejecting or not H0, is called the test of
H0 against H1.



Errors
Suppose Y has distribution fY(y; θ) for θ ∈ Θ

Formulate a null hypothesis H0 : θ ∈ Θ0 and an alternative
hypothesis H1 : θ ∈ Θ1 with Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅

A test or critical function ϕ = ϕ(Y) assigns to each possible value y
one of these two decisions

ϕ : Y 7→ {0, 1}

where 1 denotes the decision of rejecting H0 and 0 denotes the
decision of not rejecting H0, and thereby partition the sample space
Y into two complementary regions Y0 and Y1

When performing a test one may arrive at the correct decision, or
one may commit one of two errors: rejecting H0 when it is true (type
I error) or not rejecting it when it is false (type II error).



Critical region

Unfortunately, the probabilities of the two types of error cannot be
controlled simultaneously

Choose the level of significance α ∈ (0, 1), and control the
probability of type I error at α, i.e.

prθ(Y ∈ Y1) ≤ α ∀ θ ∈ Θ0

The size of the test is
sup
θ∈Θ0

prθ(Y ∈ Y1)

If, for all α, the size of the test is α, we call Y1 a critical region of size
α, denoted by Yα



Power function

Subject to
sup
θ∈Θ0

prθ(Y ∈ Yα) = α

it is desired to maximize

prθ(Y ∈ Yα) ∀ θ ∈ Θ1

Considered as a function of θ, this probability is called the power
function of the test

pow(θ;α) = prθ(Y ∈ Yα; θ)



p-value

If we require that the rejection regions Yα and Yα̃ are nested in the
sense that

Yα ⊂ Yα̃ if α < α̃

the p-value is defined as the smallest significance level at which the
null hypothesis would be rejected for the given observation:

pobs = inf{α : y ∈ Yα}
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In the present section we consider only the case where H0 is a
simple hypothesis

It is best to begin with a simple alternative hypothesis H1

H0 : Y ∼ f0(y) = f(y; θ0), H1 : Y ∼ f1(y) = f(y; θ1)

Let Yα and Y ′
α be two critical region of size α, i.e.

pr0(Y ∈ Yα) = pr0(Y ∈ Y ′
α) (1)

We regard Yα as preferable to Y ′
α for the alternative H1 if

pr1(Y ∈ Yα) > pr1(Y ∈ Y ′
α) (2)

The region Yα is called the best critical region of size α if (2) is
satisfied for all other Y ′

α satisfying the size condition (1).

We call pr1(Y ∈ Yα) the size α power of the test against H1



Neyman-Pearson lemma

For simplicity, suppose that the likelihood ratio lr(Y) = f1(Y)/f0(Y)
is, under H0, a continuous random variable such that for all α, there
exists a unique cα such that

pr0(lr(Y) ≥ cα) = α

We call the region defined by

lr(y) ≥ cα

the size α likelihood ratio critical region

A fundamental result, called the Neyman-Pearson lemma, is that, for
any size α, the likelihood ratio critical region is the best critical region.



Let Yα be the likelihood ratio critical region and let Y1 be any other
critical region, both being of size α. Then

α =

∫
Yα

f0(y)dy =

∫
Y1

f0(y)dy

so that ∫
Yα\Y1

f0(y)dy =

∫
Y1\Yα

f0(y)dy

since
∫
Yα

f0(y)dy =
∫
Yα\Y1

f0(y)dy+
∫
Yα∩Y1

f0(y)dy

Now, if y ∈ Yα \ Y1, which is inside Yα, f1(y) ≥ cαf0(y), while if
y ∈ Y1 \ Yα, which is outside Yα, cαf0(y) > f1(y).



We have that∫
Yα\Y1

f1(y)dy ≥ cα

∫
Yα\Y1

f0(y)dy = cα

∫
Y1\Yα

f0(y)dy ≥
∫
Y1\Yα

f1(y)dy

with strict inequality unless the regions are equivalent

Then ∫
Yα

f1(y)dy ≥
∫
Y1

f1(y)dy

thus the power of Yα is at least that of Y1

Note that if Y1 had been of size less than α the final inequality holds



Normal mean with known variance
Let Y1, . . . , Yn be i.i.d. N(µ, 1). Consider

H0 : µ = µ0, H1 : µ = µ1

with µ1 > µ0.

lr(y) = exp
{
nȳ(µ1 − µ0)−

1

2
nµ21 +

1

2
nµ20

}
Because all quantities, except for ȳ, are fixed constants, and because
µ1 − µ0 > 0, a critical region of the form lr(y) ≥ cα is equivalent to
one of the form ȳ ≥ dα. Since Ȳ

H0∼ N(µ0, 1/n)

dα = µ0 +
zα√
n

where zα is the 1− α quantile of N(0, 1), and

Y+
α = {y1, . . . , yn :

√
n(ȳ− µ0) ≥ zα}



Suppose we have an observation from N(µ, 1) and that the
hypotheses are H0 : µ = 0 and H1 : µ = 10.

We observe yobs = 3. Then pobs = 1− Φ(yobs) = 0.0013 for testing
H0 against H1.

On the other hand, pobs = Φ(yobs − 10) < 0.0001 for testing H1

against H0.



Exponential family

Let Y1, . . . , Yn be i.i.d. in the single parameter exponential family

exp{a(θ)b(y) + c(θ) + d(y)}

among them the normal, gamma, binomial and Poisson distribution,
and that the hypotheses are H0 : θ = θ0 and H1 : θ = θ1.

Then the likelihood ratio involves the data only through the
sufficient statistic S =

∑
b(Yj) and the best critical region has the

form
exp{a(θ1)− a(θ0)}s ≥ eα

If a(θ1)− a(θ0) > 0, this is equivalent to s ≥ ẽα, the critical region
being the same for all such θ1



Poisson mean

Let Y ∼ Poisson(λ). Consider

H0 : λ = 1, H1 : λ = λ1 > 1

The likelihood critical regions have the form y ≥ dα

However, because Y is discrete, the only critical regions are of the
form y ≥ r, where r is an integer

r 0 1 2 3 4 5 6
pr0(Y ≥ r) 1 0.632 0.264 0.08 0.0189 0.0037 0.0006

If α is one of the values above, a likelihood ratio region of the
required size does exist.



By a mathematical artifice, it is, however, possible to achieve
likelihood ratio critical regions with other values of α

Suppose that α = 0.05. The region y ≥ 4 is too small, whereas the
region y ≥ 3 is too large. All values y ≥ 4 are put in the critical
region, whereas if y = 3 we regard the data as in the critical region
with probability π such that

pr0(Y ≥ 4) + π · pr0(Y = 3) = 0.05

leading to π = 0.51. This is a randomized critical region of size 0.05.

The randomized definition of pobs corresponding to Y = y is

pr0(Y > y) + U · pr0(Y = y)

where U ∼ Uniform(0, 1), independently of Y. The corresponding
random variable is, under H0, Uniform(0, 1).



Observation with two possible precision

Suppose that a random variable Y is equally likely to be N(µ, σ21) or
N(µ, σ22), where σ21 and σ22 are different and known.

A random variable C is observed, taking the value 1 or 2 according
to whether Y has the first or second distribution. Thus it is known
from which distribution y comes.

Then the likelihood of the data (c, y) is

fC,Y(c, y) =
1

2
(2πσ2c )

− 1
2 exp{−(y− µ)2/(2σ2c )}

so that S = (C, Y) is sufficient for µ with σ21 and σ22 known.

Because pr(C = 1) = pr(C = 2) = 1/2 independent of µ, C is
ancillary



Suppose σ21 = 1 and σ22 = 106 and consider H0 : µ = 0 and
H1 : µ = µ1 > 0

If we work conditionally on c, the size α critical region is

Yα =

{
y > zα c = 1

y > 103zα c = 2

That is, we require

pr(Y ∈ Yα|C;H0) = α

and, subject to this, we require maximum power.

Conditional p-value

pr(Y ≥ yobs|C = c;H0) = 1− Φ(yobs/σc)



On the other hand, if we don’t impose the conditional size condition,
we apply the Neyman-Pearson lemma directly, we could obtain a
likelihood ratio critical region with more power.

The conclusion is that the requirement of using a conditional
distribution cannot be deduced from that of maximum power and
the two requirements may conflict.



Composite alternatives

Suppose H0 : θ = θ0 and H1 : θ ∈ Θ1. Two cases now arise.

– We get the same size α best critical region for all θ ∈ Θ1. Then
we say that the region is uniformly most powerful size α region.
If this holds for each α, then the test itself is called uniformly
most powerful (UMP).

– The best critical region depends on the particular θ ∈ Θ1. Then
no uniformly most powerful exists. One possibility is to take
θ ∈ Θ1 very close to θ0, to maximize the power locally near the
null hypothesis.
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Y1, . . . , Yn be i.i.d. N(µ, 1). Test H0 : µ = µ0 against H1 : µ > µ0
with critical region Y+

α = {y1, . . . , yn :
√
n(ȳ− µ0) ≥ zα}

pow(µ;α) = Φ(
√
n(µ− µ0)− zα)



Sample size determination

Suppose that before the data are obtained, it is required to choose an
appropriate number n of observations such that

pow(µ0 + δ;α) = 1− β

for a given δ > 0

This implies that

Φ(
√
nδ − zα) = 1− β = Φ(zβ)

i.e.
n = (zα + zβ)2/δ2



Unbiased tests

Y1, . . . , Yn be i.i.d. N(µ, 1). ∄ UMP test for H0 : µ = 0 vs H1 : µ 6= 0.

A critical region Yα of size α is called unbiased if

pr(Y ∈ Yα; θ) ≥ pr(Y ∈ Yα; θ0) = α ∀ θ ∈ Θ1

One may restrict attention to unbiased regions and among these
look for the one with maximum power

A test which is uniformly most powerful amongst the class of all
unbiased tests is uniformly most powerful unbiased (UMPU)

The test with critical region Y−
α/2 ∪ Y+

α/2 is UMPU.



Type III error

Consider the problem of testing H0 : θ = θ0 versus H0 : θ 6= θ0.

If H0 is rejected, then a decision is to be made as to whether θ > θ0
or θ < θ0.

We say that a Type III (or directional) error is made when it is
declared that θ > θ0 when in fact θ < θ0 (or vice-versa).



Normal mean vector with known variance-covariance matrix
Suppose Y = (Y1, . . . , Ym)T is multivariate normal with mean vector
µ = (µ1, . . . , µm)

T ≥ 0 and known nonsingular covariance matrix Σ

For testing H0 : µ = 0 against H1 : µ = µ1, the most powerful test
rejects for large values of

µT
1Σ

−1Y

In particular, no UMP test exists

For testing H0 : µ = 0 against H1 : µ = (k, . . . , k)T for k > 0 , a
UMP test exists and rejects for large values of the sum of the
components of Σ−1Y. If, in particular, Σ has diagonal elements 1 and
off-diagonal elements ρ, then the test rejects when∑

i

Yi ≥ zα(m+m(m− 1)ρ)1/2



Locally most powerful tests

Denote the pdf of the vector Y by fY(y; θ) and consider H0 : θ = θ0
against H1 : θ = θ0 + ϵ for small ϵ > 0

log lr(y) = log fY(y; θ0 + ϵ)− log fY(y; θ0)

=
[
log fY(y; θ0) + ϵ

∂ log fY(y; θ0)
∂θ0

+ . . .
]
 − log fY(y; θ0)

= ϵ
∂ log fY(y; θ0)

∂θ0
+ . . .

Thus, for sufficiently small positive ϵ, we obtain the likelihood ratio
critical region from large values of the score statistic

U = u(Y; θ0) =
∂ log fY(Y; θ0)

∂θ0



In regular problems,

E(u(Y; θ0); θ0) = 0

Var(u(Y; θ0); θ0) = i(θ0) = E
[
− ∂2 log fY(Y; θ0)

∂θ20
; θ0

]
where i(θ) the Fisher information about θ contained in Y

If Y1, . . . , Yn are independent, then

U =
∑n

j=1 Uj with Uj =
∂ log fYj(Yj; θ0)

∂θ0

i(θ0) =
∑n

j=1 ij(θ0) with ij(θ0) = Var(u(Yj; θ0); θ0)



In large samples from regular models the null distribution of U is
approximately normal with mean zero and variance equal to the
Fisher information, so a locally most powerful critical region has
form

Yα = {y1, . . . , yn : u(y, θ0) ≥ i(θ0)1/2zα}

Under the alternative hypothesis H1 : θ = θ0 + ϵ

E(U; θ0 + ϵ) ≈ ϵi(θ0)

Var(U; θ0 + ϵ) ≈ i(θ0)

hence the local power of the score test is

pr1{u(y, θ0) ≥ i(θ0)1/2zα} ≈ Φ(ϵi(θ0)1/2 − zα)



Exponential families

Suppose that Y1 has the pdf in the single exponential family density

fY1(y; θ) = exp{a(θ)b(y) + c(θ) + d(y)}

and that H0 : θ = θ0 against H1 : θ = θ1. Then

∂ log fY1(y; θ0)
∂θ0

= a′(θ0)b(y) + c′(θ0)

−∂
2 log fY1(y; θ0)

∂θ20
= −a′′(θ0)b(y)− c′′(θ0)

It follows that for this single observation

U1 = a′(θ0)b(y) + c′(θ0)

i1(θ0) = −a′(θ0)
d
dθ0

{ c′(θ0)
a′(θ0)

}



Location parameter of a Cauchy distribution
Let Y1, . . . , Yn be i.i.d. in the Cauchy distribution

1

π[1 + (y− θ)2]

For the null hypothesis H0 : θ = θ0 the score from Y1 is

U1(θ0) =
2(Y1 − θ0)

1 + (Y1 − θ0)2

and the information from a single observation is

i1(θ0) =
1

2

The test statistic is thus

U(θ0) = 2

n∑
i=1

(Yi − θ0)

1 + (Yi − θ0)2

Its null distribution has mean 0 and variance n/2
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A first type of composite null hypothesis is when we have a single
parametric family of densities f(y; θ) with θ ∈ Θ and

H0 : θ ∈ Θ0 ⊂ Θ, H1 : θ ∈ Θ \Θ0

e.g. Y1, . . . , Yn i.i.d. N(µ, 1), and

H0 : µ ≤ µ0 vs H1 : µ > µ0

H0 : µ ∈ [−∆,∆] vs H1 : µ ∈ (−∞,−∆) ∪ (∆,∞) for some ∆ > 0

H0 : µ ∈ (−∞,−∆] ∪ [∆,∞) vs H1 : µ ∈ (−∆,∆)



A second type of composite null hypothesis is when we have a
single parametric family of densities f(y; θ) where θ = (ψ, λ) and
Θ = Ψ× Λ, and

H0 : ψ = ψ0, H1 : ψ ∈ Ψ \ ψ0

e.g. Y1, . . . , Yn i.i.d. N(µ, σ2) with σ2 unknown, and

H0 : µ = µ0 vs H1 : µ 6= µ0



UMP tests

In the one-parameter exponential family, a UMP test exists for
testing

– the one-sided null hypothesis H0 : θ ≤ θ0 against H1 : θ > θ0

– the interval null hypothesis H0 : θ ≤ θ1 ∪ θ ≥ θ2 against
H1 : θ1 < θ < θ2

A UMP test does not exist for testing

– the two-sided null hypothesis H0 : θ1 ≤ θ ≤ θ2 against
H1 : θ < θ1 ∪ θ > θ2



Let Y1, . . . , Yn be i.i.d. N(µ, 1), and H0 : µ ∈ (−∞,−∆] ∪ [∆,∞)
against H1 : µ ∈ (−∆,∆) for some pre-specified∆ > 0.

The best critical region of size α is given by

Yα = {(y1, . . . , yn) : −
√

cα/n ≤ ȳ ≤
√

cα/n}

where cα is the α quantile of χ2
1(n∆

2)

It satisfies
pr−∆(Y ∈ Yα) = pr∆(Y ∈ Yα) = α
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For testing hypotheses about the parameter of interest ψ in the
presence of nuisance parameters λ, a naive approach would be to fix
λ at an arbitrary value, say λ∗

We can then test H0 : ψ = ψ0, obtaining a value of pobs that will be a
function of λ∗

We may hope that for λ∗ ∈ Λ, this value of pobs does not vary greatly

Suppose that Y1, . . . , Yn are i.i.d. N(µ, σ2) and H0 : µ = 0 vs
H1 : µ > 0. Then pobs is

pr(Ȳ ≥ ȳ;H0, σ
∗) = 1− Φ(

√
nȳ/σ∗)

This probability varies between 1 and 1/2 if ȳ < 0, and between 0
and 1/2 if ȳ > 0; if ȳ = 0 it is 1/2



Similar regions

We require that for all λ ∈ Λ

pr(Y ∈ Yα;ψ0, λ) = α

A region satisfying the above is called a similar region of size α

Suppose that, given ψ = ψ0, Sλ is sufficient for the nuisance
parameter λ. Then the conditional distribution of Y given Sλ = s
does not depend on λ when H0 is true

If Sλ is boundedly complete, then any similar region of size α must
be of size α conditionally on Sλ = s for almost all s. We call a critical
region Yα with this property

pr(Y ∈ Yα|Sλ = s;ψ0) = α

for all s, a region of Neyman structure



UMPS tests

Suppose that Sλ is boundedly complete. By the Neyman-Pearson
lemma, we can find the similar test with maximum power for a
particular alternative hypothesis ψ = ψ1, λ = λ1, obtaining the best
critical region {

y :
fY|Sλ(y|s;ψ1, λ1)

fY|Sλ(y|s;ψ0)
≥ cα

}
If this same region applies to all ψ1 and λ1, then we call the region
uniformly most powerful similar



Comparison of Poisson means
Suppose that Y1 and Y2 are independent Poisson random variables
with means µ1 and µ2, and H0 : µ1 = ψ0µ2 where ψ0 is a given
constant. Here we reparametrize so that ψ = µ1/µ2 and λ = µ2

Under H0 : ψ = ψ0, we have that Sλ = Y1 + Y2 is a complete
sufficient statistic for λ

The conditional distribution of (Y1, Y2) given Sλ = s is

fY1,Y2|Sλ(y1, y2|s;ψ, λ) =
(

s
y1

)
(1 + ψ)−sψy1

If H1 : ψ > ψ0, the likelihood ratio test rejects H0 for large y1.

pr(Y1 ≥ r|Sλ = s;ψ0) =

s∑
x=r

(
s
y1

)
(

ψ0

1 + ψ0
)x(

1

1 + ψ0
)s−x

The test is uniformly most powerful similar



Normal mean with unknown variance

Let Y1, . . . , Yn be i.i.d. in N(µ, σ2), both parameters unknown.
Consider H0 : µ = µ0 vs H1 : µ > µ0.

Under H0, V(µ0) =
∑n

i=1(Yi − µ0)
2 is a complete sufficient statistic

for σ2.

The likelihood ratio region for all alternatives µ1 > µ0 takes the
form

{y :

n∑
i=1

(Yi − µ0) ≥ cα{v(µ0)}1/2}

This is the one-sided Student t test, which is UMPS

If the alternatives are µ 6= 0, then we are led to the two-sided
Student t test



Invariant tests
Suppose that Y has probability density f(y; θ) with parameter space
Θ, and H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 = Θ \Θ0.

The hypothesis testing problem is then said to be invariant under a
group G of transformations acting on the sample space if for any
trasformation g ∈ G, the distribution of gY is obtained from the
distribution of Y by replacing θ by g∗θ, such that the collection G∗ of
all such induced parameter trasformations g∗ is a group on the
parameter space preserving both Θ0 and Θ1, i.e.

for any g ∈ G and all sets A in the sample space

pr(gY ∈ A; θ) = pr(Y ∈ A; g∗θ)

for some g∗ ∈ G∗ satisfying g∗Θ = Θ, g∗Θ0 = Θ0, g∗Θ1 = Θ1.

A test with critical region Yα is an invariant test if

Y ∈ Yα implies gY ∈ Yα for all g ∈ G



Mean of multivariate normal distribution

Let Y1, . . . , Yn be a random sample from the m-variate normal
distribution Nm(µ,Σ) with Σ unknown, and H0 : µ = 0 vs
H1 : µ 6= 0.

Let G be the group of all non-singular m×m matrices A, so that

gYi = AYi, i = 1, . . . , n

The induced transformation on the parameter space is defined by

g∗(µ,Σ) = (Aµ,AΣAT)

because AYi has m-variate normal distribution Nm(Aµ,AΣAT)



Hotelling’s test

If n > m, for testing H0 : µ = µ0 vs H1 : µ 6= µ0, the Hotelling test
statistic is

n(Ȳ− µ0)
TS−1(Ȳ− µ0)

where Ȳ is the sample mean vector and

S =
1

n− 1

n∑
i=1

(Yi − Ȳ)(Yi − Ȳ)T

is the sample variance/covariance matrix

Under H0, the test statistic follows Hotelling(m, n− 1), i.e.

m(n− 1)

n−m
Fm,n−m

where Fm,n−m is the F distribution with parameters m and n−m



Squared Student and Hotelling test statistics have a similar form:

(uvn)(Chisquareddf )−1(uvn) =
√
n(ȳ− µ0)[s2]−1√n(ȳ− µ0)

(mvn)t(Wishart
df )−1(mvn) =

√
n(Ȳ− µ0)

t[S]−1√n(Ȳ− µ0)

where under H0

√
n(ȳ− µ0)/σ ∼ N(0, 1)

s2 =
∑n

i=1(yi − ȳ)2/(n− 1) with (n− 1)s2/σ2 ∼ χ2
n−1,

√
nΣ−1/2(Ȳ− µ0) ∼ Nm(0, Im)

(n− 1)Σ−1/2SΣ−1/2 ∼ Wishart(Im, n− 1)



Hotelling’s test is the most powerful test in the class of tests that are
invariant to non-singular linear transformations

Yi 7→ AYi + b

for a non-singular m×m matrix A and any m× 1 vector b

Invariance here means that no direction away from µ0 should
receive special emphasis. Hotelling’s test is equally powerful in all
directions of the µ space, which is a strong condition.

A UMPS test will not exist, because any specific alternative µ1 ∈ Rm

indicates a preferred direction in which the t test

tµ1 =
√
n

µT
1 Ȳ√
µT
1 Sµ1

is uniformly most powerful



Pulmonary data

Changes in pulmonary function of 12 workers after 6 hours of
exposure to cotton dust.

A data frame with 12 observations on the following 3 variables:

– FVC : change in FVC (forced vital capacity) after 6 hours.
– FEV : change in FEV_3 (forced expiratory volume) after 6 hours.
– CC : change in CC (closing capacity) after 6 hours.

Test H0 : µ = 0 vs H1 : µ 6= 0 : tobs = 14.018, pobs = 0.0512

i 1 2 3 4 5 6 7 8 9 10 11 12
FVC -0.11 0.02 -0.02 0.07 -0.16 -0.42 -0.32 -0.35 -0.10 0.01 -0.10 -0.26
FEV -0.12 0.08 0.03 0.19 -0.36 -0.49 -0.48 -0.30 -0.04 -0.02 -0.17 -0.30
CC -4.30 4.40 7.50 -0.30 -5.80 14.50 -1.90 17.30 2.50 -5.60 2.20 5.50



Confidence region
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−
2

0
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FEV

C
C

The (1− α) confidence region is a hyperellipsoid centered at Ȳ

Cα =
{
µ : n(Ȳ− µ)TS−1(Ȳ− µ) ≤ m(n− 1)

n−m
Fm,n−m,α

}



Let Xi = aTYi for i = 1, . . . , n and a = (a1, . . . , am)T ∈ Rm. Then Xi
is normal with µx = E(Xi) = aTµ and σ2x = Var(Xi) = aTΣa

The squared Student t statistic is

(X̄− µx)
2

s2x/n
=

n(aTȲ− aTµ)2

aTSa

The invariant Hotelling statistic is the largest of all such squared
Student t statistics

max
a

n(aTȲ− aTµ)2

aTSa
= n(Ȳ− µ)TS−1(Ȳ− µ)

which occurs when a ∝ S−1(Ȳ− µ)



Simultaneous confidence interval

A (1− α) confidence interval for µx = aTµ is

x̄− sx√
n
cα ≤ µx ≤ x̄+

sx√
n
cα

where cα = tn−1;α/2

A (1− α) simultaneous confidence interval for all µx = aTµ with
a ∈ Rm is

x̄− sx√
n
dα ≤ µx ≤ x̄+

sx√
n
dα

where d2α = m(n−1)
n−m fm,n−m;α. It guarantees

pr(L̃α ≤ µx ≤ Ũα, ∀ a ∈ Rp) ≥ 1− α



ȳ Lα Uα L̃α Ũα

FVC -0.14 -0.16 -0.13 -0.17 -0.12
FEV -0.16 -0.20 -0.13 -0.22 -0.11
CC 3.00 -31.98 37.98 -56.82 62.82



Prediction region for a future observation

Suppose Yi i.i.d. Nm(µ,Σ), and Ȳ and S have been calculated from a
sample of n observations

If Yn+1 is some new observation sampled from Nm(µ,Σ), then

n
n+ 1

(Yn+1 − Ȳ)tS−1(Yn+1 − Ȳ) ∼ (n− 1)m
n−m

Fm,n−m

given that Var(Yn+1 − Ȳ) = Var(Yn+1) + Var(Ȳ) = n+1
n Σ

The (1− α) prediction ellipsoid is given by all y that satisfy

(y− Ȳ)tS−1(y− Ȳ) ≤ (n2 − 1)m
n(n−m)

fm,n−m;α
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