Prediction, estimation and attribution Exercises

Consider the following hypothetical microarray study: $n=400$ subjects participate in the study, arriving one per day in alternation between Treatment and Control (day 1 Treatment, day 2 Control, day 3 Treatment, etc.). Each subject is measured on a microarray of $p=200$ genes. The 400×200 data matrix X has independent normal entries

$$
X_{i j} \stackrel{\text { ind }}{\sim} \mathcal{N}\left(\mu_{i j}, 1\right)
$$

1. Suppose that most of $\mu_{i j}$ are 0 , only for $j=30,48,57,65,84,92,113,128,143,195$

$$
\mu_{i j}=0.5 \quad i \text { odd }(\text { Treatment }) \quad \mu_{i j}=-0.5 \quad i \text { even }(\text { Control })
$$

See the following Figure, where the lines correspond to genes with average gene expression of 0.5 for Treatments and -0.5 for Controls:

In the first random Forest analysis (RF-I), the 400 subjects were randomly divided into a training set of 320 and a test set of 80 .

The second random Forest analysis (RF-II), uses the subjects from days 1 to 320 for the training set and from days 321 to 400 for the test set.
(a) Do you expect the test error of RF-II to be lower than 50% ?
(b) Do you expect any difference in training prediction error between RF-I and RF-II ?
(c) How many genes large Variable Importance score do you expect to find with RF-I?
2. Now suppose that for $j=30,48,57,65,84,92,113,128,143,195$
$\mu_{i j}=2 \quad i=1,3, \ldots, 317,319$ (Treatment) $\quad \mu_{i j}=-2 \quad i=2,4, \ldots, 318,320$, (Control)
and for everything else $\mu_{i j}=0$. See the following Figure:

days (subjects)
(d) Do you expect the test prediction error of RF-II to be lower than 50% ?
(e) Do you expect the training prediction error of RF-I to be higher than the training prediction error of RF-II ?

