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Prediction intervals in linear models



Suppose we have fitted a Gaussian linear model based on the
training data (y, X), obtaining the estimates

f=x%X)"'Xly, & =|y-X3*/(n-p)

There are (at least) two levels at which we can make predictions

1. A point prediction is a single best guess about what a new Y will
be when X = x

2. A prediction interval

Cal) =xB£1,_0%

A(XX)"Ix+ 1
for Y| X = x with (1 — «) conditional coverage guarantee, i.e.
PYeCu(x)|X=x)=1—«

where the probability is with respect to the training data
(X1,Y1),...,(Xy, Yn), and the new response Y at a fixed test
point X = x
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Model miss-specification
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1 — a = 90%, marginal coverage ~ 93%
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Marginal and conditional coverage

(X,Y) € R? x R follows some unknown joint distribution Pxy
— Training (X3, Y1), ..., (Xp, Ys) and test (X1, Yot1) Lid. (X, Y)

- C, satisfies distribution-free marginal coverage at level 1 — v if
P(Yn+1 € Ca(Xn+1)) >1—« V Pxy

where the probability is w.r.t. (X, Y1),...,(X,, Y,) and
(Xn+17 Yn+1)
- C, satisfies distribution-free conditional coverage at level 1 — v if

P(Yn+1 S Ca(Xn+1)|Xn+1 = X) >1—a« V Pxy, V x

where the probability is w.r.t. (X1, Y1),..., (Xy, Yn), and Y, qq
at a fixed test point X, 11 = x
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Figure 10: Prediction sets with various notions of coverage: no coverage, marginal coverage, or
conditional coverage (at a level of 90%). In the marginal case, all the errors happen in the same groups and
regions in X -space. Conditional coverage disallows this behavior, and errors are evenly distributed.

From: Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty
quantification. arXiv preprint arXiv:2107.07511.
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Conformal Prediction
Conformal prediction (Vovk, Gammerman, Saunders, Vapnik,
1996-1999) is a general framework for constructing prediction sets

C,, with

1. Finite-sample coverage guarantee (exact)
2. For any data distribution (distribution-free)

3. For any predictive model (model-free)
P{Yn+1 S Acn<Xn+1)} =1—-«
Two main limitations:

1. Marginal coverage

2. Exchangeability assumption



Full conformal and split conformal

Two main algorithms:

— Full conformal prediction

- Split conformal prediction

Inductive or split conformal prediction addresses the very high
computational cost of (full) conformal prediction, but at the cost of
introducing extra randomness due to a one-time random split of the
data.



Algorithm 1 Full conformal prediction

Require: Training (x1, y1), - - -, (X4, ¥n), test x,41, algorithm fi, level
a, grid of values Y = {y,y,y’,...}
1: for ye Y do

2 Train :[j’y( ) la( (xl,YI)7-~- 7(me/n)7(xn+1aJ/))
Compute R = |y; — i?(x;)| fori=1,...,n

Sort R}, ..., R} in increasing order: R( EREE < R(yn)
Compute R(Ji = R(yk) withk=T[(1—-a)(n+ lﬂ
Compute R = [y — [i¥(xn41)|

7: end for

8 Colxnt1) ={y€Y R <R}




— Assume that (X;, Y;),i=1,...,n+ 1 are iid. froma
probability distribution Pxy on the sample space R? x R.
This is the only assumption of the method

— The prediction interval
Colxni1) = {y e R: K" <R},

satisfies
P(Yn+1 S Ca(Xn+1)) =1—-«

ifandonlyifa € {1/(n+1),2/(n+1),...,n/(n+ 1)}
- Informally, the null hypothesis that the random variable Y,
will have the outcome y, i.e.

Hyi Yn+1 =Yy

is rejected when RY > R},



Nonparametric Statistics

e Machine Learning has strong historical roots in Nonparametric
Statistics

e K-Nearest Neighbors was introduced by two statisticians
(students of Jerzy Neyman), Evelyn Fix and Joseph Hodges
(Fix and Hodges, 1951)

e Conformal Prediction turns out to have roots in Permutation
Testing (Fisher, 1925; Efron, 2021)



Prediction interval for Y,4+1
(VOVK ET AL., 2005)

Confidence interval for A
(LEHMANN, 1963)

Supervised learning
Training set (X1, Y1), ..., (X, Yn)
Test point (Xp+1, Ynt1)

Two-sample location shift model
X iid.
1yew-

, Xn ~ F(x)
i.i.d.
Yla---,Ym ~ F(y_A)

Hy: Y11=y Hy: A=d
(x17y1)7'"a(xnayn)v(xn+1ay) Xlsoooy Xny Y1 = dyooo s Ym —d
(:’:{y:p;>a} C={d:p;>a}
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Algorithm 2 Split conformal prediction

Require: Training (x1,y1),. .., (Xn, Yn), Xnt+1, algorithm fi, valida-
tion sample size m, level o
1: Split {1,...,n} into L of size wand Iof size m=n— w

2: Train fig (x) = fi(x; (x3, 1), [ € L)

Compute R; = |y; — fip(x;)| fori € I

Sort {R;, i € I} in increasing order: Ry < ... < Ry
Compute R, = Ry with k = [(1 — a)(m +1)]

Ca(Xnt1) = {y ER: ’y_ Ar(xns1)| < Ra}
= [ﬂL(xn-i-l) - Ray/lL(xn—f—l) + Ra]




- Assume that (X;,Y;),i=1,...,n+ 1 areiid. froma
probability distribution Pxy on the sample space R? x R

— The prediction interval

Co(xnt1) = [ir(xns1) — Ra, fiz(Xny1) + Ra]

satisfies
P(Yn+1 S Ca(Xn+1)) =1—«
ifandonlyifa € {1/(m+1),2/(m+1),...,m/(m+1)}
- Note that in computing the critical value R, = R(y) with

k=[(1—-«a)(m+1)], we need to have k < m, which happens
ifa > 1/(m+ 1) (otherwise if k > m we need to set R, = +00)



Random Forest
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Smoothing splines
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Conformity scores

— In the previous algorithm we used a statistic, called conformity
score, which is the absolute value of the residual

Ri=|yi—ju(x)], iel

where /iy, is an estimator of E(Y | X) based on {(Xj, Y;),i € L}
— The oracle knows the conditional distribution of Y | X. The
oracle prediction interval

Co(x) = [ (%), ¢' /2 (x)]

where ¢7(x) is the y-quantile of Y | X = x, guarantees exact
conditional coverage

P(YeCX)|X=x)=1—a Vx



Suppose that

2
() =((2)- G, 7557)
X Ihx pPox0y Oy

then the conditional distribution of Y | X = xis

(VX = ) ~ Npy 972 (5= 1), 031 = 7))

from which we can compute the quantile g7 (x)



[qa/Q( x),q'~ O‘/Q( x)] as a function of x
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Conformal quantile regression

- Compute conformity scores
Ri:max{?]Z(Xi) — Y, Y- g ,)}, iel

where ¢/ is an estimator of the y-quantile of Y | X based on
{(X;, Y3),ie€ L}

— Sort {R;, i € I} in increasing order, obtaining Ry < ... < R,
and compute R, = Ry with k= [(1 —a)(m+1)]
— Compute the prediction interval
Caltnsr) = {yeRimax{q(x1) = y,y— 8 (o) | < Ra}
= [q](xnt1) = Ra, E&_W(xn-&-l) + Ra

or Ca(nr1) = Bif Ry < (1/2)(q] (xn41) — @1 (%as1))
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