Conformal prediction

Statistical Learning CLAMSES - University of Milano-Bicocca

Aldo Solari

References

- Lei, G'Sell, Rinaldo, Tibshirani, Wasserman (2018)
 Distribution-free predictive inference for regression.
 JASA,113:1094–1111
- Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.
- A Tutorial on Conformal Prediction https://www.youtube.com/watch?v=nql000Lu_iE (Part 1); https://www.youtube.com/watch?v=TRx4a2u-j7M (Part 2); https://www.youtube.com/watch?v=37HKrmA5gJE (Part 3)

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Suppose we have fitted a Gaussian linear model based on the training data (\mathbf{y}, \mathbf{X}) , obtaining the estimates

$$\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}, \quad \hat{\sigma}^2 = \|\mathbf{y} - \mathbf{X}\hat{\beta}\|^2 / (n-p)$$

There are (at least) two levels at which we can make predictions

- A *point prediction* is a single best guess about what a new *Y* will be when *X* = *x*
- 2. A prediction interval

$$C_{\alpha}(\mathbf{x}) = \mathbf{x}^{t} \hat{\beta} \pm t_{n-p}^{1-\alpha/2} \hat{\sigma} \sqrt{\mathbf{x}^{t} (\mathbf{X}^{t} \mathbf{X})^{-1} \mathbf{x} + 1}$$

for Y|X = x with $(1 - \alpha)$ conditional coverage guarantee, i.e.

$$P(Y \in C_{\alpha}(x) | X = x) = 1 - \alpha$$

where the probability is with respect to the training data $(X_1, Y_1), \ldots, (X_n, Y_n)$, and the new response *Y* at a fixed test point X = x

х

$$f(x) = \frac{1}{4}(x+4)(x+1)(x-2)$$

-

Model miss-specification

 $1-\alpha=90\%$, marginal coverage $\approx 93\%$

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Marginal and conditional coverage

- − $(X, Y) \in \mathbb{R}^p \times \mathbb{R}$ follows some *unknown* joint distribution P_{XY}
- Training $(X_1, Y_1), ..., (X_n, Y_n)$ and test (X_{n+1}, Y_{n+1}) i.i.d. (X, Y)
- C_{α} satisfies distribution-free marginal coverage at level 1α if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) \ge 1 - \alpha \qquad \forall P_{XY}$$

where the probability is w.r.t. $(X_1, Y_1), \ldots, (X_n, Y_n)$ and (X_{n+1}, Y_{n+1})

– C_{α} satisfies distribution-free conditional coverage at level $1 - \alpha$ if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1}) | X_{n+1} = x) \ge 1 - \alpha \qquad \forall P_{XY}, \ \forall x$$

where the probability is w.r.t. $(X_1, Y_1), \ldots, (X_n, Y_n)$, and Y_{n+1} at a fixed test point $X_{n+1} = x$

Figure 10: Prediction sets with various notions of coverage: no coverage, marginal coverage, or conditional coverage (at a level of 90%). In the marginal case, all the errors happen in the same groups and regions in X-space. Conditional coverage disallows this behavior, and errors are evenly distributed.

From: Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Conformal Prediction

Conformal prediction (Vovk, Gammerman, Saunders, Vapnik, 1996-1999) is a general framework for constructing prediction sets \hat{C}_n with

- 1. Finite-sample coverage guarantee (exact)
- 2. For any data distribution (distribution-free)
- 3. For any predictive model (model-free)

$$\mathbb{P}\{Y_{n+1} \in \hat{C}_n(X_{n+1})\} = 1 - \alpha$$

Two main limitations:

- 1. Marginal coverage
- 2. Exchangeability assumption

Full conformal and split conformal

Two main algorithms:

- Full conformal prediction
- Split conformal prediction

Inductive or split conformal prediction addresses the very high computational cost of (full) conformal prediction, but at the cost of introducing extra randomness due to a one-time random split of the data.

Algorithm 1 Full conformal prediction

Require: Training $(x_1, y_1), \ldots, (x_n, y_n)$, test x_{n+1} , algorithm $\hat{\mu}$, level α , grid of values $\mathcal{Y} = \{ \mathbf{v}, \mathbf{v}', \mathbf{v}'', \ldots \}$ 1: for $\gamma \in \mathcal{Y}$ do Train $\hat{\mu}^{y}(x) = \hat{\mu}(x; (x_1, y_1), \dots, (x_n, y_n), (x_{n+1}, y))$ 2: Compute $R_i^{\gamma} = |\gamma_i - \hat{\mu}^{\gamma}(x_i)|$ for $i = 1, \dots, n$ 3: Sort $R_1^{\mathcal{Y}}, \ldots, R_n^{\mathcal{Y}}$ in increasing order: $R_{(1)}^{\mathcal{Y}} \leq \ldots \leq R_{(n)}^{\mathcal{Y}}$ 4: Compute $R_{\alpha}^{y} = R_{(k)}^{y}$ with $k = \lfloor (1 - \alpha)(n + 1) \rfloor$ 5: Compute $R^{y} = |y - \hat{\mu}^{y}(x_{n+1})|$ 6: 7: end for 8: $C_{\alpha}(x_{n+1}) = \{ y \in \mathcal{Y} : R^{y} < R_{\alpha}^{y} \}$

- Assume that (X_i, Y_i) , i = 1, ..., n + 1 are i.i.d. from a probability distribution P_{XY} on the sample space $\mathbb{R}^p \times \mathbb{R}$. This is the only assumption of the method
- The prediction interval

$$C_{\alpha}(x_{n+1}) = \{ y \in \mathbb{R} : R^{y} \leq R^{y}_{\alpha} \},\$$

satisfies

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) = 1 - \alpha$$

if and only if $\alpha \in \{1/(\mathit{n}+1), 2/(\mathit{n}+1), \ldots, \mathit{n}/(\mathit{n}+1)\}$

- Informally, the null hypothesis that the random variable Y_{n+1} will have the outcome *y*, i.e.

$$H_y: Y_{n+1} = y$$

is rejected when $R^{y} > R^{y}_{\alpha}$

Nonparametric Statistics

- Machine Learning has strong historical roots in Nonparametric Statistics
- K-Nearest Neighbors was introduced by two statisticians (students of Jerzy Neyman), Evelyn Fix and Joseph Hodges (Fix and Hodges, 1951)
- Conformal Prediction turns out to have roots in Permutation Testing (Fisher, 1925; Efron, 2021)

Prediction interval for Y_{n+1} (Vovk et al., 2005)	Confidence interval for Δ (Lehmann, 1963)
Supervised learning Training set $(X_1, Y_1), \ldots, (X_n, Y_n)$ Test point (X_{n+1}, Y_{n+1})	Two-sample location shift model $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} F(x)$ $Y_1, \ldots, Y_m \stackrel{\text{i.i.d.}}{\sim} F(y - \Delta)$
$H_y: Y_{n+1} = y$	$H_d:\Delta=d$
$(x_1, y_1), \ldots, (x_n, y_n), (x_{n+1}, y)$	$x_1,\ldots,x_n,y_1-d,\ldots,y_m-d$
$\hat{C} = \{ y : p_y^* > \alpha \}$	$\hat{C} = \{d: p_d^* > \alpha\}$

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Algorithm 2 Split conformal prediction

- **Require:** Training $(x_1, y_1), \ldots, (x_n, y_n), x_{n+1}$, algorithm $\hat{\mu}$, validation sample size *m*, level α
 - 1: Split $\{1, \ldots, n\}$ into *L* of size *w* and *I* of size m = n w
 - 2: Train $\hat{\mu}_L(\mathbf{x}) = \hat{\mu}(\mathbf{x}; (\mathbf{x}_l, \mathbf{y}_l), l \in L)$
 - 3: Compute $R_i = |y_i \hat{\mu}_L(x_i)|$ for $i \in I$
 - 4: Sort $\{R_i, i \in I\}$ in increasing order: $R_{(1)} \leq \ldots \leq R_{(m)}$
 - 5: Compute $R_{\alpha} = R_{(k)}$ with $k = \lceil (1 \alpha)(m + 1) \rceil$

$$C_{\alpha}(x_{n+1}) = \{ y \in \mathbb{R} : |y - \hat{\mu}_L(x_{n+1})| \le R_{\alpha} \}$$

= $[\hat{\mu}_L(x_{n+1}) - R_{\alpha}, \hat{\mu}_L(x_{n+1}) + R_{\alpha}]$

- Assume that (X_i, Y_i) , i = 1, ..., n + 1 are i.i.d. from a probability distribution P_{XY} on the sample space $\mathbb{R}^p \times \mathbb{R}$
- The prediction interval

$$C_{\alpha}(x_{n+1}) = [\hat{\mu}_L(x_{n+1}) - R_{\alpha}, \hat{\mu}_L(x_{n+1}) + R_{\alpha}]$$

satisfies

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) = 1 - \alpha$$

if and only if $\alpha \in \{1/(\textit{m}+1), 2/(\textit{m}+1), \ldots, \textit{m}/(\textit{m}+1)\}$

- Note that in computing the critical value $R_{\alpha} = R_{(k)}$ with $k = \lceil (1 - \alpha)(m + 1) \rceil$, we need to have $k \le m$, which happens if $\alpha \ge 1/(m + 1)$ (otherwise if k > m we need to set $R_{\alpha} = +\infty$)

Random Forest

^

Smoothing splines

х

Conformity scores

- In the previous algorithm we used a statistic, called *conformity score*, which is the absolute value of the residual

$$R_i = |y_i - \hat{\mu}_L(x_i)|, \quad i \in I$$

where $\hat{\mu}_L$ is an estimator of $\mathbb{E}(Y \mid X)$ based on $\{(X_i, Y_i), i \in L\}$

– The oracle knows the conditional distribution of $Y \mid X$. The oracle prediction interval

$$C^*_{\alpha}(x) = [q^{\alpha/2}(x), q^{1-\alpha/2}(x)]$$

where $q^{\gamma}(x)$ is the γ -quantile of $Y \mid X = x$, guarantees exact conditional coverage

$$P(Y \in C^*_{\alpha}(X) | X = x) = 1 - \alpha \quad \forall x$$

Suppose that

$$\left(\begin{array}{c} Y\\ X\end{array}\right) \sim N\left(\left(\begin{array}{c} \mu_{y}\\ \mu_{x}\end{array}\right), \left(\begin{array}{c} \sigma_{y}^{2} & \rho\sigma_{x}\sigma_{y}\\ \rho\sigma_{x}\sigma_{y} & \sigma_{x}^{2}\end{array}\right)\right)$$

then the conditional distribution of $Y \mid X = x$ is

$$(Y|X=x) \sim N\left(\mu_y + \rho \frac{\sigma_y}{\sigma_x}(x-\mu_x), \sigma_y^2(1-\rho^2)\right)$$

from which we can compute the quantile $q^{\gamma}(x)$

$$C^*_{lpha}(x) = [q^{lpha/2}(x), q^{1-lpha/2}(x)]$$
 as a function of x

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Conformal quantile regression

- Compute conformity scores

$$R_i = \max\left\{\hat{q}_L^\gamma(X_i) - Y_i, Y_i - \hat{q}_L^{1-\gamma}(X_i)
ight\}, \quad i \in I$$

where \hat{q}_L^{γ} is an estimator of the γ -quantile of $Y \mid X$ based on $\{(X_i, Y_i), i \in L\}$

- Sort {*R_i*, *i* ∈ *I*} in increasing order, obtaining *R*₍₁₎ ≤ . . . ≤ *R*_(*m*), and compute *R*_α = *R*_(*k*) with *k* = $\lceil (1 \alpha)(m + 1) \rceil$
- Compute the prediction interval

$$C_{\alpha}(x_{n+1}) = \{ y \in \mathbb{R} : \max \left\{ \hat{q}_{L}^{\gamma}(x_{n+1}) - y, y - \hat{q}_{L}^{1-\gamma}(x_{n+i}) \right\} \le R_{\alpha} \}$$

= $[\hat{q}_{L}^{\gamma}(x_{n+1}) - R_{\alpha}, \hat{q}_{L}^{1-\gamma}(x_{n+1}) + R_{\alpha}]$

or $C_{\alpha}(x_{n+1}) = \emptyset$ if $R_{\alpha} < (1/2)(\hat{q}_{L}^{\gamma}(x_{n+1}) - \hat{q}_{L}^{1-\gamma}(x_{n+1}))$

$$X_i \sim U(0, 2\pi), \epsilon_i \sim N(0, 1), Y_i = \sin(X_i) + \frac{\pi |X_i|}{20} \epsilon_i$$