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Suppose we have fitted a Gaussian linear model based on the
training data (y,X), obtaining the estimates

β̂ = (XtX)−1Xty, σ̂2 = ∥y− Xβ̂∥2/(n− p)

There are (at least) two levels at which we can make predictions

1. A point prediction is a single best guess about what a new Y will
be when X = x

2. A prediction interval

Cα(x) = xtβ̂ ± t1−α/2
n−p σ̂

√
xt(XtX)−1x+ 1

for Y|X = x with (1− α) conditional coverage guarantee, i.e.

P(Y ∈ Cα(x)|X = x) = 1− α

where the probability is with respect to the training data
(X1, Y1), . . . , (Xn, Yn), and the new response Y at a fixed test
point X = x
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Model miss-specification
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1− α = 90%, marginal coverage ≈ 93%
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Marginal and conditional coverage

– (X, Y) ∈ Rp × R follows some unknown joint distribution PXY
– Training (X1, Y1), . . . , (Xn, Yn) and test (Xn+1, Yn+1) i.i.d. (X, Y)
– Cα satisfies distribution-free marginal coverage at level 1− α if

P(Yn+1 ∈ Cα(Xn+1)) ≥ 1− α ∀ PXY

where the probability is w.r.t. (X1, Y1), . . . , (Xn, Yn) and
(Xn+1, Yn+1)

– Cα satisfies distribution-free conditional coverage at level 1−α if

P(Yn+1 ∈ Cα(Xn+1)|Xn+1 = x) ≥ 1− α ∀ PXY, ∀ x

where the probability is w.r.t. (X1, Y1), . . . , (Xn, Yn), and Yn+1

at a fixed test point Xn+1 = x



From: Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty
quantification. arXiv preprint arXiv:2107.07511.
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Conformal Prediction

Conformal prediction (Vovk, Gammerman, Saunders, Vapnik,
1996-1999) is a general framework for constructing prediction sets
Ĉn with

1. Finite-sample coverage guarantee (exact)
2. For any data distribution (distribution-free)
3. For any predictive model (model-free)

P{Yn+1 ∈ Ĉn(Xn+1)} = 1− α

Two main limitations:

1. Marginal coverage
2. Exchangeability assumption



Full conformal and split conformal

Two main algorithms:

– Full conformal prediction
– Split conformal prediction

Inductive or split conformal prediction addresses the very high
computational cost of (full) conformal prediction, but at the cost of
introducing extra randomness due to a one-time random split of the
data.



Algorithm 1 Full conformal prediction
Require: Training (x1, y1), . . . , (xn, yn), test xn+1, algorithm µ̂, level

α, grid of values Y = {y, y′, y′′, . . .}
1: for y ∈ Y do
2: Train µ̂y(x) = µ̂(x; (x1, y1), . . . , (xn, yn), (xn+1, y))
3: Compute Ryi = |yi − µ̂y(xi)| for i = 1, . . . , n
4: Sort Ry1, . . . , R

y
n in increasing order: Ry(1) ≤ . . . ≤ Ry(n)

5: Compute Ryα = Ry(k) with k = ⌈(1− α)(n+ 1)⌉
6: Compute Ry = |y− µ̂y(xn+1)|
7: end for
8: Cα(xn+1) = {y ∈ Y : Ry ≤ Ryα}



– Assume that (Xi, Yi), i = 1, . . . , n+ 1 are i.i.d. from a
probability distribution PXY on the sample space Rp × R.
This is the only assumption of the method

– The prediction interval

Cα(xn+1) = {y ∈ R : Ry ≤ Ryα},

satisfies
P(Yn+1 ∈ Cα(Xn+1)) = 1− α

if and only if α ∈ {1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1)}
– Informally, the null hypothesis that the random variable Yn+1

will have the outcome y, i.e.

Hy : Yn+1 = y

is rejected when Ry > Ryα



Nonparametric Statistics

• Machine Learning has strong historical roots in Nonparametric
Statistics

• K-Nearest Neighbors was introduced by two statisticians
(students of Jerzy Neyman), Evelyn Fix and Joseph Hodges
(Fix and Hodges, 1951)

• Conformal Prediction turns out to have roots in Permutation
Testing (Fisher, 1925; Efron, 2021)



Prediction interval for Yn+1 Confidence interval for ∆
(VovK et al., 2005) (Lehmann, 1963)

Supervised learning Two-sample location shift model
Training set (X1, Y1), . . . , (Xn, Yn) X1, . . . ,Xn

i.i.d.∼ F(x)

Test point (Xn+1, Yn+1) Y1, . . . , Ym
i.i.d.∼ F(y−∆)

Hy : Yn+1 = y Hd : ∆ = d

(x1, y1), . . . , (xn, yn), (xn+1, y) x1, . . . , xn, y1 − d, . . . , ym − d

Ĉ = {y : p∗y > α} Ĉ = {d : p∗d > α}
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Algorithm 2 Split conformal prediction
Require: Training (x1, y1), . . . , (xn, yn), xn+1, algorithm µ̂, valida-

tion sample size m, level α
1: Split {1, . . . , n} into L of size w and I of size m = n− w
2: Train µ̂L(x) = µ̂(x; (xl, yl), l ∈ L)
3: Compute Ri = |yi − µ̂L(xi)| for i ∈ I
4: Sort {Ri, i ∈ I} in increasing order: R(1) ≤ . . . ≤ R(m)

5: Compute Rα = R(k) with k = ⌈(1− α)(m+ 1)⌉

Cα(xn+1) = {y ∈ R : |y− µ̂L(xn+1)| ≤ Rα}
= [µ̂L(xn+1)− Rα, µ̂L(xn+1) + Rα]



– Assume that (Xi, Yi), i = 1, . . . , n+ 1 are i.i.d. from a
probability distribution PXY on the sample space Rp × R

– The prediction interval

Cα(xn+1) = [µ̂L(xn+1)− Rα, µ̂L(xn+1) + Rα]

satisfies
P(Yn+1 ∈ Cα(Xn+1)) = 1− α

if and only if α ∈ {1/(m+ 1), 2/(m+ 1), . . . ,m/(m+ 1)}
– Note that in computing the critical value Rα = R(k) with

k = ⌈(1− α)(m+ 1)⌉, we need to have k ≤ m, which happens
if α ≥ 1/(m+1) (otherwise if k > m we need to set Rα = +∞)



Random Forest
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Smoothing splines
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Conformity scores

– In the previous algorithm we used a statistic, called conformity
score, which is the absolute value of the residual

Ri = |yi − µ̂L(xi)|, i ∈ I

where µ̂L is an estimator of E(Y | X) based on {(Xi, Yi), i ∈ L}
– The oracle knows the conditional distribution of Y | X. The

oracle prediction interval

C∗
α(x) = [qα/2(x), q1−α/2(x)]

where qγ(x) is the γ-quantile of Y | X = x, guarantees exact
conditional coverage

P(Y ∈ C∗
α(X)|X = x) = 1− α ∀ x



Suppose that(
Y
X

)
∼ N

((
µy
µx

)
,

(
σ2
y ρσxσy

ρσxσy σ2
x

))
then the conditional distribution of Y | X = x is

(Y|X = x) ∼ N
(
µy + ρ

σy
σx

(x− µx), σ
2
y(1− ρ2)

)
from which we can compute the quantile qγ(x)
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Conformal quantile regression

– Compute conformity scores

Ri = max
{
q̂γL(Xi)− Yi, Yi − q̂1−γ

L (Xi)
}
, i ∈ I

where q̂γL is an estimator of the γ-quantile of Y | X based on
{(Xi, Yi), i ∈ L}

– Sort {Ri, i ∈ I} in increasing order, obtaining R(1) ≤ . . . ≤ R(m),
and compute Rα = R(k) with k = ⌈(1− α)(m+ 1)⌉

– Compute the prediction interval

Cα(xn+1) = {y ∈ R : max
{
q̂γL(xn+1)− y, y− q̂1−γ

L (xn+i)
}
≤ Rα}

= [q̂γL(xn+1)− Rα, q̂
1−γ
L (xn+1) + Rα]

or Cα(xn+1) = ∅ if Rα < (1/2)(q̂γL(xn+1)− q̂1−γ
L (xn+1))
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