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Webpages

MOODLE: https://elearning.unimib.it/course/view.php?id=44902

– Syllabus
– Forum
– Grades
– Exercises

WEB: https://aldosolari.github.io/SL/

– Calendar
– Slides, R code, exercises
– Textbooks
– Exam



Exam

The exam consists in a written examination (and an optional oral
examination).

The written (open-book) examination will be held in lab.

– Questions about theory
– Computational exercises
– Data analysis tasks



Program

– Prediction
– Conformal prediction

– Estimation
– James-Stein estimation
– Ridge regression
– Smoothing splines
– Sparse modeling and the Lasso

– Attribution
– Data splitting for variable selection
– Stability Selection
– Knockoff filter
– Leave-one-covariate-out (LOCO) inference
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Statistical Point of View

Machine Learning Statistics



Modern prediction algorithms such as random forests and deep
learning use training sets, often very large ones, to produce rules for
predicting new responses from a set of available predictors.

A second question—right after “How should the prediction rule be
constructed?”—is “How accurate are the rule’s predictions?”

From: Efron, B. (2021). Resampling plans and the estimation of prediction error. Stats, 4(4), 1091-1115.



How to quantify the uncertainty of predictions from algorithms used
in machine learning ?
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From: Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty
quantification. arXiv preprint arXiv:2107.07511.



From: Michael I. Jordan on Conformal Prediction

https://www.youtube.com/watch?v=kSGP4F_ZcBY

https://www.youtube.com/watch?v=kSGP4F_ZcBY
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James-Stein estimation

Let X1, X2 and X3 be independent r.v. with Xi ∼ N(µi, 1).

Writing X = (X1,X2,X3), suppose we want to find a good estimator
µ̂ = µ̂(X) of µ = (µ1, µ2, µ3)

Squared error loss function:

L(µ̂, µ) = ∥µ̂− µ∥2 = (µ̂1 − µ1)
2 + (µ̂2 − µ2)

2 + (µ̂3 − µ3)
2

Risk function: R(µ̂, µ) = E[L(µ̂, µ)]

MLE is µ̂ = X. ∃ an alternative estimator µ̃ such that
R(µ̃, µ) ≤ R(µ̂, µ) for all µ, with strict inequality for some value of
µ?



Ridge regression

– The ML estimator of the parameter of the linear regression
model β̂ = (XtX)−1Xty is only well-defined if (XtX)−1 exists.

– In wide-data situations where p > n, the rank of XtX is n < p,
and, consequently, it is singular. Hence, the regression
parameter β cannot be estimated.

– How to perform high-dimensional regression?



Smoothing splines
mcycle dataset (MASS R package), gives n = 133 observations of
accelerometer readings taken through time (after impact) in an
experiment on the efficacy of crash helm

From: Silverman (1985) Some aspects of the spline smoothing approach to non-parametric curve fitting. JRSS-B, 47:1-52.



Classical vs high-dimensional theory

– Consider Linear Discriminant Analysis where the two classes
are distributed as p-variate Gaussians X1 ∼ N(µ1, Ip) and
X2 ∼ N(µ2, Ip) with γ = ∥µ1 − µ2∥

– Classical theory: if (n1, n2) → ∞ and p remains fixed, then
LDA error probability prob.→ Φ(−γ/2)

– High-dimensional theory: if (n1, n2, p) → ∞ with p/ni → δ,
then LDA error probability prob.→ Φ

(
− γ2

2
√

γ2+2δ

)
– LDA error probability for

(p, n1, n2) = (400, 800, 800)

is better described by the classical or the high-dimensional
theory? e.g. for γ = 1 and δ = 1/2, LDA error probability
≈ 31% (classical) or ≈ 36% (high-dimensional)?



Sparse modeling and the Lasso
A sparse statistical model is one having only a small number of
nonzero parameters (easier to estimate and interpret)

Source: M.J. Wainwright

The best subset selection (variable selection) problem is nonconvex
and NP-hard. The lasso (Tibshirani, 1996) [cited by 51K] solves a
convex relaxation of it by replacing the ℓ0 norm by the ℓ1 norm.
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Data splitting

library(tidyverse)
library(ISLR)
dataset <- Hitters %>% na.exclude
n <- nrow(dataset)
set.seed(123)
dataset$Salary <- rexp(n, 1/mean(dataset$Salary))
summary(stepAIC(lm(Salary ~ ., dataset), trace=F))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 466.65825 102.36325 4.559 7.96e-06 ***
AtBat 0.51870 0.33543 1.546 0.1232
Walks -4.50902 2.54583 -1.771 0.0777 .
CAtBat -0.08607 0.04093 -2.103 0.0364 *
CWalks 0.82056 0.38464 2.133 0.0338 *
LeagueN 149.31154 63.22722 2.362 0.0189 *



Stability selection

Not a new variable selection technique, it improves existing methods

Figure 1 from Meinshausen and Bühlmann (2010)
regularisation and stability path for the lasso



Knockoff filter

How to control the false discovery rate when performing variable
selection?

Source: E. Candés



Textbooks

– Efron, Hastie (2016) Computer-Age Statistical Inference:
Algorithms, Evidence, and Data Science. Cambridge University
Press [CASI]

– Hastie, Tibshirani, Friedman (2009). The Elements of Statistical
Learning. Springer [ESL]

– Hastie, Tibshirani, Wainwright (2015). Statistical Learning with
Sparsity: The Lasso and Generalizations. CRC Press [SLS]

– Lewis, Kane, Arnold (2019) A Computational Approach to
Statistical Learning. Chapman And Hall/Crc. [CASL]

– Wainwright (2019) High-Dimensional Statistics: A
Non-Asymptotic Viewpoint. Cambridge University Press [HDS]
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