Statistical Learning

Academic year 2022/23 CLAMSES - University of Milano-Bicocca

Aldo Solari aldo.solari@unimib.it

Webpages

MOODLE: https://elearning.unimib.it/course/view.php?id=44902

- Syllabus
- Forum
- Grades
- Exercises

WEB: https://aldosolari.github.io/SL/

- Calendar
- Slides, R code, exercises
- Textbooks
- Exam

Exam

The exam consists in a written examination (and an optional oral examination).

The written (open-book) examination will be held in lab.

- Questions about theory
- Computational exercises
- Data analysis tasks

Program

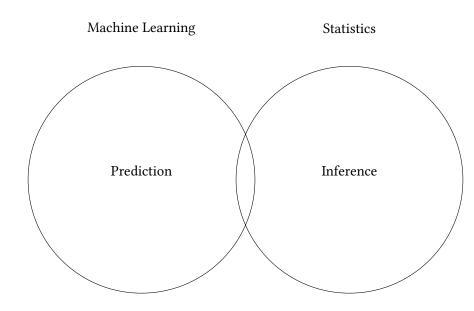
- Prediction
 - Conformal prediction
- Estimation
 - James-Stein estimation
 - Ridge regression
 - Smoothing splines
 - Sparse modeling and the Lasso
- Attribution
 - Data splitting for variable selection
 - Stability Selection
 - Knockoff filter
 - Leave-one-covariate-out (LOCO) inference

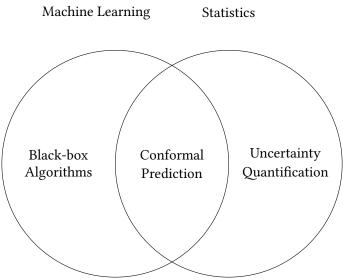
Table of Contents

I. Prediction

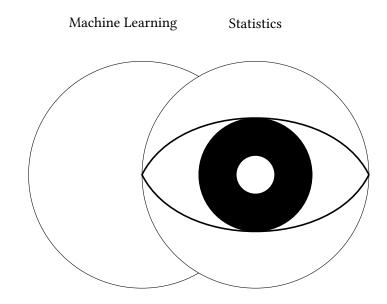
II. Estimation

III. Attribution





Statistical Point of View

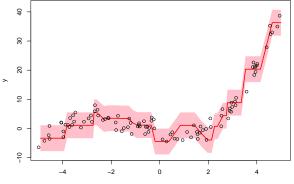


Modern prediction algorithms such as random forests and deep learning use training sets, often very large ones, to produce rules for predicting new responses from a set of available predictors.

A second question—right after "How should the prediction rule be constructed?"—is "How accurate are the rule's predictions?"

From: Efron, B. (2021). Resampling plans and the estimation of prediction error. Stats, 4(4), 1091-1115.

How to quantify the uncertainty of predictions from algorithms used in machine learning ?



х

Figure 1: Prediction set examples on Imagenet. We show three progressively more difficult examples of the class for squirrel and the prediction sets (i.e., $C(X_{test}))$ generated by conformal prediction.

From: Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.

From: Michael I. Jordan on Conformal Prediction

https://www.youtube.com/watch?v=kSGP4F_ZcBY

Table of Contents

I. Prediction

II. Estimation

III. Attribution

James-Stein estimation

Let X_1 , X_2 and X_3 be independent r.v. with $X_i \sim N(\mu_i, 1)$.

Writing $X = (X_1, X_2, X_3)$, suppose we want to find a good estimator $\hat{\mu} = \hat{\mu}(X)$ of $\mu = (\mu_1, \mu_2, \mu_3)$

Squared error loss function:

$$L(\hat{\mu},\mu) = \|\hat{\mu}-\mu\|^2 = (\hat{\mu}_1-\mu_1)^2 + (\hat{\mu}_2-\mu_2)^2 + (\hat{\mu}_3-\mu_3)^2$$

Risk function: $R(\hat{\mu}, \mu) = \mathbb{E}[L(\hat{\mu}, \mu)]$

MLE is $\hat{\mu} = X$. \exists an alternative estimator $\tilde{\mu}$ such that $R(\tilde{\mu}, \mu) \leq R(\hat{\mu}, \mu)$ for all μ , with strict inequality for some value of μ ?

Ridge regression

- The ML estimator of the parameter of the linear regression model $\hat{\beta} = (X^t X)^{-1} X^t y$ is only well-defined if $(X^t X)^{-1}$ exists.
- In wide-data situations where p > n, the rank of X^tX is n < p, and, consequently, it is singular. Hence, the regression parameter β cannot be estimated.
- How to perform high-dimensional regression?

Smoothing splines

mcycle dataset (MASS R package), gives n = 133 observations of accelerometer readings taken through time (after impact) in an experiment on the efficacy of crash helm

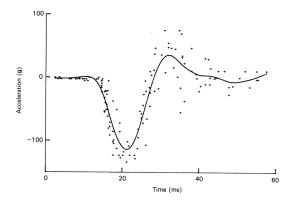


Fig. 3. The motor-cycle impact data with automatically chosen smoothing curve.

From: Silverman (1985) Some aspects of the spline smoothing approach to non-parametric curve fitting. JRSS-B, 47:1-52.

Classical vs high-dimensional theory

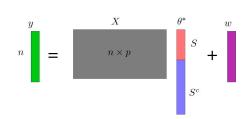
- Consider Linear Discriminant Analysis where the two classes are distributed as *p*-variate Gaussians $X_1 \sim N(\mu_1, I_p)$ and $X_2 \sim N(\mu_2, I_p)$ with $\gamma = \|\mu_1 \mu_2\|$
- Classical theory: if $(n_1, n_2) \to \infty$ and p remains fixed, then LDA error probability $\stackrel{prob.}{\to} \Phi(-\gamma/2)$
- High-dimensional theory: if $(n_1, n_2, p) \to \infty$ with $p/n_i \to \delta$, then LDA error probability $\stackrel{prob.}{\to} \Phi\left(-\frac{\gamma^2}{2\sqrt{\gamma^2+2\delta}}\right)$
- LDA error probability for

$$(p, n_1, n_2) = (400, 800, 800)$$

is better described by the classical or the high-dimensional theory? e.g. for $\gamma = 1$ and $\delta = 1/2$, LDA error probability $\approx 31\%$ (classical) or $\approx 36\%$ (high-dimensional)?

Sparse modeling and the Lasso

A sparse statistical model is one having only a small number of nonzero parameters (easier to estimate and interpret)



Set-up: noisy observations $y = X\theta^* + w$ with sparse θ^*

The best subset selection (variable selection) problem is nonconvex and NP-hard. The lasso (Tibshirani, 1996) [cited by 51K] solves a convex relaxation of it by replacing the ℓ_0 norm by the ℓ_1 norm.

Table of Contents

I. Prediction

II. Estimation

III. Attribution

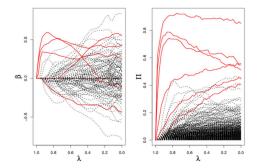
Data splitting

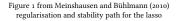
```
library(tidyverse)
library(ISLR)
dataset <- Hitters %>% na.exclude
n <- nrow(dataset)
set.seed(123)
dataset$Salary <- rexp(n, 1/mean(dataset$Salary))
summary(stepAIC(lm(Salary ~ ., dataset), trace=F))</pre>
```

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	466.65825	102.36325	4.559	7.96e-06	***
AtBat	0.51870	0.33543	1.546	0.1232	
Walks	-4.50902	2.54583	-1.771	0.0777	
CAtBat	-0.08607	0.04093	-2.103	0.0364	*
CWalks	0.82056	0.38464	2.133	0.0338	*
LeagueN	149.31154	63.22722	2.362	0.0189	*

Stability selection

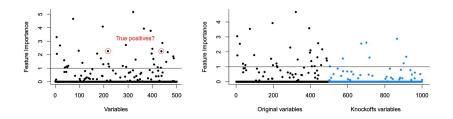
Not a new variable selection technique, it improves existing methods





Knockoff filter

How to control the false discovery rate when performing variable selection?



Source: E. Candés

Textbooks

- Efron, Hastie (2016) Computer-Age Statistical Inference: Algorithms, Evidence, and Data Science. Cambridge University Press [CASI]
- Hastie, Tibshirani, Friedman (2009). The Elements of Statistical Learning. Springer [ESL]
- Hastie, Tibshirani, Wainwright (2015). Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press [SLS]
- Lewis, Kane, Arnold (2019) A Computational Approach to Statistical Learning. Chapman And Hall/Crc. [CASL]
- Wainwright (2019) High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge University Press [HDS]