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– A very surprising result arises in a remarkably simple
estimation problem.

– Let X1, . . . ,Xp be independent random variables, with
Xi ∼ N(µi, 1) for i = 1, . . . , p. Writing X = (X1, . . . ,Xp)

t,
suppose we want to find a good estimator µ̂ = µ̂(X) of
µ = (µ1, . . . , µp)

t

– Squared error loss function:

L(µ̂, µ) = ∥µ̂− µ∥2 =
p∑

i=1

(µ̂i − µi)
2

where ∥ · ∥ denotes the Euclidean norm
– Risk function: R(µ̂, µ) = E[L(µ̂, µ)]



Inadmissible estimators
– If µ̂ and µ̃ are both estimators of µ, we say that µ̂ strictly

dominates µ̃ if R(µ̂, µ) ≤ R(µ̃, µ) for all µ, with strict inequality
for some value of µ. In this case we say that µ̃ is inadmissible.

– If µ̂ is not strictly dominated by any estimator of µ, it is said to
be admissible. Note that admissible estimators are not
necessarily sensible: for p = 1, the estimator µ̂ = 37 (which
ignores the data!) is admissible.

– On the other hand decision theory dictates that inadmissible
estimators can be discarded

– µ̂ = X is a very obvious estimator of µ: it is the maximum
likelihood estimator and the uniform minimum variance
unbiased estimator with

R(µ̂, µ) = p ∀ µ ∈ Rp

since ∥X− µ∥2 ∼ χ2
p



James-Stein estimator

– It has been proved that µ̂ = X is admissible for p = 1, 2

– James and Stein (1961) showed that the estimator

µ̂JS =

(
1− p− 2

∥X∥2

)
X

strictly dominates µ̂ = X for p ≥ 3:

R(µ̂JS, µ) = p− (p− 2)2E
(

1

∥X∥2

)
< p ∀ µ ∈ Rp



∥X∥2 =
∑p

i=1 X
2
i follows a noncentral χ2 distribution with p degrees

of freedom and noncentrality parameter ∥µ∥2. Using a result about
noncentral χ2 variables, we can write

∥X∥2 ∼ χ2
p+2K

where K ∼ Poisson(∥µ∥2/2).

E
(

1

∥X∥2

)
= E

(
1

χ2
p+2K

)
= E

{
E

(
1

χ2
p+2K

)
|K

}

= E
{

1

(p− 2) + 2K

}
≥ 1

(p− 2) + ∥µ∥2

with equality if µ = 0, where we used E(1/χ2
p) = 1/(p− 2) for

p > 2 and Jensen’s inequality. Then

R(µ̂JS, µ) ≤ p− p− 2

1 + ∥µ∥2/(p− 2)



Oracle linear estimator

– A linear estimator of the form

µ̃ = bX = (bX1, . . . , bXp)
t

with 0 ≤ b ≤ 1 shrinks X towards the origin
– The risk of a linear estimator is

R(µ̃, µ) = (1− b)2∥µ∥2 + b2p

minimized by

b∗ =
∥µ∥2

p+ ∥µ∥2

– The risk of the oracle linear estimator µ̃∗ = b∗X is

R(µ̃∗, µ) = p∥µ∥2/(p+ ∥µ∥2)
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– Geometrically, the James-Stein estimator shrinks each
component of X towards the origin, and the biggest
improvement comes when µ is close to zero

– For µ = 0 we have R(µ̂JS, 0) = 2 for all p ≥ 2

– As ∥µ∥2 → ∞, R(µ̂JS, µ) → p



Stein’s heuristic argument (1956)

– Stein argued that a good estimate should obey µ̂i ≈ µi for every
i. Thus we should also have µ̂2

i ≈ µ2
i , which further implies∑

i µ̂
2
i ≈

∑
i µ

2
i

– Consider the estimator µ̂ = X. For this estimator we have

E∥X∥2 = E
∑
i

X2
i = E

∑
i

(µi + Zi)2 = ∥µ∥2 + p

where Zi ∼ N(0, 1)

– This suggests that for large p, ∥X∥2 is likely to be considerably
larger than ∥µ∥2, and hence we may be able to obtain a better
estimator by shrinking the estimator µ̂ = X towards 0.



Positive James-Stein estimator

– If the shrinkage in µ̂JS is too large, it is possible that the
estimator switches to the other sign when ∥X∥2 < p− 2

– By precluding the possibility of a sign reversal, the positive JS
estimator

µ̂+
JS =

(
1− p− 2

∥X∥2

)
+

X

where (a)+ = max(a, 0) denotes the positive part
– µ̂+

JS further improves upon the µ̂JS estimate, i.e.,
R(µ̂+

JS, µ) < R(µ̂JS, µ) for all µ
– However, this estimator is not admissible either.



Shrinking toward an arbitrary point

– In terms of choosing a point to shrink towards, though, there is
nothing special about the origin, and we could equally well
shrink towards any pre-chosen m ∈ Rp using the estimator

µ̂m
JS = m+

(
1− p− 2

∥X−m∥2

)
(X−m)

– In this case, we have R(µ̂m
JS, µ−m) = R(µ̂JS, µ), so µ̂m

JS still
strictly dominates µ̂ = X



Correlated data

– Assume that X ∼ Np(µ,Σ) where Σ is a known covariance
matrix

– A a generalization of James-Stein estimator

µ̂Σ
JS =

(
1− c(p̃− 2)

XtΣ−1X

)
X

with 0 < c < 2 and p̃ = tr(Σ)/λmax(Σ) is the effective
dimension of the problem, where λmax(Σ) is the maximum
eigenvalue of Σ

– If p̃ > 2, then the generalization of the JS estimator µ̂Σ
JS

dominates the MLE µ̂ = X



Linear model

– We can apply the previous result to the case of linear regression
y ∼ Nn(Xβ, σ2In), where the MLE is the OLS estimator
β̂ = (XtX)−1Xty ∼ Np(β, σ

2(XtX)−1), so with µ = Xβ and
µ̂ = Xβ̂ we have R(µ̂, µ) = σ2p

– James-Stein estimator becomes

β̂JS =

(
1− (p− 2)σ2

β̂tXtXβ̂

)
β̂

– Letting µ̂JS = Xβ̂JS and µ = Xβ, the James–Stein Theorem
guarantees that

R(µ̂JS, µ) ≤ σ2p

no matter what β is, as long as p ≥ 3



– It is natural to ask how crucial the normality and squared error
loss assumptions are to the Stein phenomenon

– The normality assumption is not critical at all;
– The original result can also be generalised to different loss

functions, but there is an important caveat here: the Stein
phenomenon only holds when we are interested in
simultaneous estimation of all components of µ. If our loss
function were L(µ̂, µ) = (µ̂1 − µ1)

2 then we could not improve
on µ̂ = X



p = 5, µ = (
√

p/2,
√

p/2, 0, 0, 0)t, ∥µ∥2 = p

104 repetitions

Risk Risk1 Risk2 Risk3 Risk4 Risk5
MLE 5.00 1.01 1.01 1.00 0.98 0.99

JS 3.65 1.08 1.07 0.50 0.49 0.50

R(µ̂JS, µ) ≤ p− (p− 2)/(1 + p/(p− 2)) = 3.875



An Empirical Bayes interpretation



Bayesian setup

– Consider the Bayesian setup

µi ∼ N(0, τ2) X|µ ∼ N(µ, Ip) (1)

– Given the data X, the posterior of µ is

µ|X ∼ N(λX, λIp)

where λ = τ2/(1 + τ2)

– The Bayes estimator is simply the mean of the posterior

µ̂B = λX =

(
1− 1

1 + τ2

)
X

– Assuming (1), the Bayes risk is R(µ̂B, µ) = λp



Connection to James-Stein

– We cannot directly compute the shrinkage factor
λ = τ2/(1 + τ2), but perhaps we can estimate it using the data

– Since Xi = µi + Zi ∼ N(0, 1 + τ2), where Zi ∼ N(0, 1). This
implies ∥X∥2 ∼ (1 + τ2)χ2

p

– Combining this result with E[(p− 2)/χ2
p] = 1, we arrive at an

unbiased estimate for λ

λ̂ =

(
1− (p− 2)

∥X∥2

)
– Assuming (1), the Bayes risk is R(µ̂JS, µ) =

(
1 + 2

pτ2

)
R(µ̂B, µ)



p = 5, τ2 = 2, µi ∼ N(0, τ2)

104 repetitions

Bayes Risk B.Risk1 B.Risk2 B.Risk3 B.Risk4 B.Risk5
MLE 5.01 1.01 1.01 1.00 0.99 1.00

BAYES 3.34 0.67 0.68 0.67 0.67 0.66
JS 4.02 0.81 0.82 0.80 0.80 0.79

R(µ̂, µ) = 5, R(µ̂B, µ) = 3.33, R(µ̂JS, µ) = 4,



Shrinking Toward the Group Mean

– In practice, instead of arbitrarily picking some point, it might
instead make sense to chose m = X̄ as so as to adapt to the true
center of µi

– Consider the Bayesian setup

µi ∼ N(m, τ2) X|µ ∼ N(µ, Ip) (2)

with m and τ2 unknown
– The marginal distribution of our data is

Xi
i.i.d.∼ N(m, 1 + τ2)

and the posterior mean is

µ|X ∼ N(m+ λ(X−m), λIp)



– µ̂B = m+ λ(X−m) but m is unknown. Taking the empirical
Bayes approach, we can use the unbiased estimator X̄ in its
place

– Similarly, we can use the sample variance
S =

∑
i(Xi − X̄)2 ∼ (1 + τ2)χ2

p−1 to estimate λ. Now we have
E[(p− 3)/χ2

p−1] = 1

– This gives us the estimator

µ̂X̄
JS = X̄+

(
1− p− 3

S

)
(X− X̄)

If p > 3, this estimator dominates the MLE everywhere



A baseball data example



Player MLE TRUTH
1 0.34 0.30
2 0.33 0.35
3 0.32 0.22
4 0.31 0.28
5 0.29 0.26
6 0.29 0.27
7 0.28 0.30
8 0.26 0.27
9 0.24 0.23
10 0.23 0.26
11 0.23 0.26
12 0.22 0.21
13 0.22 0.26
14 0.22 0.27
15 0.21 0.32
16 0.21 0.23
17 0.20 0.28
18 0.14 0.20

The column labelled MLE is the batting average for 18 players in the 1970 season, using the
first 90 at bats.

The column labelled TRUTH is the batting average for the remainder of the 1970 season.



– Each player Batting average =( # hits / # at bats) value is a
binomial proportion

Yi ∼ Binomial(n, πi)/n

where πi is the true average and n = 90

– Since batting averages are binomial, we can use the normal
approximation

Yi ≈ N
(
πi,

πi(1− πi)

n

)
but the variance depends on the mean

– One solution is to make a variance stabilizing transformation

Xi = 2
√
n+ 0.5 arcsin

(√
nYi + 3/8

n+ 3/4

)
≈ N(µi, 1)

where µi = 2
√
n+ 0.5 arcsin(

√
nπi+3/8
90+3/4 )

– Inverted back yJSi = 1
n

[
(n+ 0.75)(sin( µ̂JS

i
2
√
n+0.5

))2 − 0.375

]
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i

(yi − yTRUEi )2 = 0.0425
∑
i

(yJSi − yTRUEi )2 = 0.0205


