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There are two main approaches:

– Fixed-X knockoffs
Requires that X is full rank with n ≥ 2p

– Model-X knockoffs
Requires assumptions on X but works with p > n



Fixed-X knockoffs
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Lasso selects 67 features: FDP(Ŝ) = ?/67



Main idea

– For each feature Xj, construct a knockoff copy X̃j

– Knockoffs X̃1, . . . , X̃p are independent of y and mimic the
original variables X1, . . . ,Xp if they were null
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Lasso selects 70 original and 43 knockoff: F̂DP(Ŝ) = 43/70 ≈ 61%
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True FDP(Ŝ) = 34/70 ≈ 54%



Knockoff construction

– Suppose without loss of generality that the features are
centered and scaled such that ∥Xj∥22 = 1 for all j

– Let Σ = XtX be the correlation matrix of the features
– The method begins by augmenting the design matrix X with a

second matrix X̃ ∈ Rn×p of knockoff variables, constructed to
satisfy

G = [X X̃]t[X X̃] =

[
XtX XtX̃
X̃tX X̃tX̃

]
=

[
Σ Σ− D

Σ− D Σ

]
for some diagonal matrix D = diag(d1, . . . , dp) such that G is
positive definite



– The knockoffs have the same correlation structure as the
original features

X̃tX̃ = XtX = Σ

– The correlation between X̃k and Xj is

X̃t
jXk = Xt

jXk ∀ k ̸= j

– The correlation between X̃j and Xj is

X̃t
jXj = 1− dj

with dj as close to 1 as possible



Equi-correlated knockoffs

Suppose we require dj = d for all j. Define

X̃ = X(Ip − dΣ−1) + UC

where

– U ∈ Rn×p is an orthonormal matrix such that UtX = 0

– C ∈ Rp×p from the Cholesky decomposition of

CtC = 4((d/2)Ip − (d/2)2Σ−1)

This approach corresponds to method="equi" in the knockoff
package. A semidefinite programming approach is used to
determine the values that minimize

∑p
j=1(1− dj) subject to the

constraints (method="sdp")



The knockoff statistics

– Fit the lasso to the augmented design matrix [X X̃] for λ ∈ Λ

– Let [β̂(λ) β̃(λ)], λ ∈ Λ denote the coefficient estimates
– Compute

Zj = sup{λ ∈ Λ : β̂j(λ) ̸= 0} = first time Xj enters the lasso path
Z̃j = sup{λ ∈ Λ : β̃j(λ) ̸= 0} = first time X̃j enters the lasso path

– Then define the statistics

Wj = max(Zj, Z̃j)·sign(Zj−Z̃j) =


Zj if Xj enters first (Zj > Z̃j)
0 if Zj = Z̃j

−Z̃j if X̃j enters first (Zj < Z̃j)



FDP estimate

– For some threshold τ ≥ 0, select

Ŝτ = {j ∈ {1, . . . , p} : Wj ≥ τ}

– The knockoff estimate of the FDP is

FDP(Ŝτ ) =
#{j ∈ N : Wj ≥ t}
#{j : Wj ≥ t}

≈
#{j ∈ N : Wj ≤ −t}

#{j : Wj ≥ t}

≤
1 + #{j : Wj ≤ −t}

#{j : Wj ≥ t}
= F̂DP(Ŝτ )
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For τ = 2, |Ŝτ | = 29 with F̂DP(Ŝτ ) = 4/29 and FDP(Ŝτ ) = 5/29
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The knockoff procedure chooses a data-dependent threshold

τ̂ = min
{
τ > 0 : F̂DP(Ŝτ ) ≤ α

}
with τ̂ = +∞ if no such τ exists.

Theorem
For any α ∈ (0, 1), the knockoff procedure selects

Ŝτ̂ = {j ∈ {1, . . . , p} : Wj ≥ τ̂}

with the guarantee that

FDR(Ŝτ̂ ) = E

(
|N ∩ Ŝτ̂ |
|Ŝτ̂ |

)
≤ α

where the expectation is taken over ε in the Gaussian linear model
y = Xβ + ε while treating X and X̃ as fixed.



Variable importance statistics

– Fit the Random Forest to the augmented design matrix [X X̃]

– Compute

Zj = VariableImportance(Xj)

Z̃j = VariableImportance(X̃j)

The importance of a variable is measured as the total decrease
in node impurities from splitting on that variable, averaged
over all trees

– Then define the statistics

Wj = abs(Zj)− abs(Z̃j)
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For τ = 0.001, |Ŝτ | = 23 with F̂DP(Ŝτ ) = 4/23 and FDP(Ŝτ ) = 7/23



Model-X knockoff



Modeling X

– X is treated as a random matrix with i.i.d. rows xi
– (xi, yi), i = 1, . . . , n are i.i.d. from some unknown distribution
– Assume we know the marginal distribution of xi, e.g.

xi = (xi1, . . . , xip) ∼ Np(µ,Σ)

– Null features given by conditional independence

N = {j ∈ {1, . . . , p} : y ⊥⊥ xj|x−j}

where x−j = {x1, . . . , xp} \ {xj}



Knockoffs in the Gaussian case

– The joint distribution of original features and knockoff copies
satisfies

[x x̃] ∼ N(M,V) with M =

[
µ
µ

]
, V =

[
Σ Σ− D

Σ− D Σ

]
where D = diag(d1, . . . , dp) such that V is positive definite

– Draw a random x̃i from the conditional distribution x̃i|xi, which
is normal with

E(x̃i|xi) = µ+ (Σ− D)Σ−1(xi − µ)

Var(x̃i|xi) = Σ− (Σ− D)Σ−1(Σ− D)

– If µ and Σ are unknown, replace by estimates µ̂ and Σ̂


