Ridge regression

Statistical Learning
CLAMSES - University of Milano-Bicocca

Aldo Solari

References

- Hastie, T. (2020). Ridge regularization: an essential concept in data science. Technometrics, 62(4), 426-433.
- van Wieringen (2015). Lecture notes on ridge regression. arXiv preprint arXiv:1509.09169.

Condition number

- In the linear model, the estimate of β is obtained by solving the normal equations

$$
X^{\top} X \beta=X^{\top} y
$$

- The difficulty of solving this system of linear equations can be described by the condition number

$$
\kappa\left(X^{\top} X\right)=\frac{d_{\max }}{d_{\min }}
$$

the ratio between the largest and smallest singular values of $X^{\top} X$

- If the condition number is very large, then the matrix is said to be ill-conditioned (see Section 2.6 of CASL)

Toy linear model with $n=p=2$. We set X and β as

$$
X=\left[\begin{array}{cc}
10^{9} & -1 \\
-1 & 10^{-5}
\end{array}\right] \quad \beta=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

And if we define $y=X \beta$, this gives

$$
y=\left[\begin{array}{cc}
10^{9} & -1 \\
-1 & 10^{-5}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
10^{9}-1 \\
-0.99999
\end{array}\right]
$$

The reciprocal of condition number, i.e. $1 / \kappa\left(X^{\top} X\right)=9.998 e-29$, is smaller than (my) machine precision, i.e. $2.220446 e-16$

X <- matrix $\left(c\left(10^{\wedge} 9,-1,-1,10^{\wedge}(-5)\right), 2,2\right)$
beta <- c(1,1)
$\mathrm{y}<-\mathrm{X} \% * \%$ beta
solve(crossprod(X), crossprod(X, y))

Error in solve.default(crossprod(X)) :
system is computationally singular:
reciprocal condition number $=9.998 \mathrm{e}-29$
.Machine\$double.eps
2.220446e-16

Ridge regression solution

- Ridge provides a remedy for an ill-conditioned $X^{t} X$ matrix
- If our $n \times p$ design matrix X has column rank less than p (or nearly so in terms of its condition number), then the usual least-squares regression equation is in trouble:

$$
\hat{\beta}=\left(X^{t} X\right)^{-1} X^{t} y
$$

- What we do is add a ridge on the diagonal - $X^{t} X+\lambda I_{p}$ with $\lambda>0$ - which takes the problem away:

$$
\hat{\beta}_{\lambda}=\left(X^{t} X+\lambda I_{p}\right)^{-1} X^{t} y
$$

- This is the ridge regression solution proposed by Hoerl and Kennard (1970)
- Ridge regression modifies the normal equations to

$$
\left(X^{\top} X+\lambda I_{p}\right) \beta=X^{\top} y
$$

and the condition number of $\left(X^{\top} X+\lambda I_{p}\right)$ is

$$
\kappa\left(X^{\top} X+\lambda I_{p}\right)=\frac{d_{\max }+\lambda}{d_{\min }+\lambda}
$$

- Notice that even if $d_{\min }=0$, the condition number will be finite if $\lambda>0$
- This technique is known as Tikhonov regularization, after the Russian mathematician Andrey Tikhonov

Penalized (Lagrange) form

- The optimization problem that ridge is solving

$$
\begin{equation*}
\min _{\beta}\|y-X \beta\|^{2}+\lambda\|\beta\|^{2} \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ is the ℓ_{2} Euclidean norm

- The ridge remedy comes with consequences. The ridge estimate is biased toward zero. It also has smaller variance than the OLS estimate.
- Selecting λ amounts to a bias-variance trade-off

Cement data

$$
n=13, p=4
$$

$$
R=\left[\begin{array}{cccc}
1 & 0.23 & -0.82 & -0.25 \\
0.23 & 1 & -0.14 & -0.97 \\
-0.82 & -0.14 & 1 & 0.03 \\
-0.25 & -0.97 & 0.03 & 1
\end{array}\right]
$$

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	62.41	70.07	0.89	0.40
X1	1.55	0.74	2.08	0.07
X2	0.51	0.72	0.70	0.50
X3	0.10	0.75	0.14	0.90
X4	-0.14	0.71	-0.20	0.84

R-squared: 0.9824

	X1	X2	X3	X4
VIF	38.50	254.42	46.87	282.51

$$
\lambda=0,0.1,1,10,1000
$$

Constrained form

- We can also express the ridge problem as

$$
\begin{equation*}
\min _{\beta}\|y-X \beta\|^{2} \quad \text { subject to }\|\beta\| \leq c \tag{2}
\end{equation*}
$$

- The two problems are of course equivalent: every solution $\hat{\beta}_{\lambda}$ in (1) is a solution to (2) with $c=\left\|\hat{\beta}_{\lambda}\right\|$

Overfitting

Large estimates of β are often an indication of overfitting

Bayesian view

- Assume

$$
y_{i} \mid \beta, X=x_{i} \sim x_{i}^{t} \beta+\epsilon_{i}
$$

with ϵ_{i} i.i.d. $N\left(0, \sigma_{\epsilon}^{2}\right)$. Here we think of β as random as well, and having a prior distribution

$$
\beta \sim N\left(0, \sigma_{\beta}^{2} I_{p}\right)
$$

- Then the negative log posterior distribution is proportional to (1), with

$$
\lambda=\frac{\sigma_{\epsilon}^{2}}{\sigma_{\beta}^{2}}
$$

and the posterior mean is the ridge estimator

- The smaller the prior variance parameter σ_{β}^{2}, the more the posterior mean is shrunk toward zero, the prior mean for β

Important details

- When including an intercept term, we usually leave this coefficient unpenalized, solving

$$
\min _{\alpha, \beta}\|y-1 \alpha-X \beta\|^{2}+\lambda\|\beta\|^{2}
$$

- Ridge regression is not invariant under scale transformations of the variables, so it is standard practice to centre each column of X (hence making them orthogonal to the intercept term) and then scale them to have Euclidean norm \sqrt{n}
- It is straightforward to show that after this standardisation of X, $\hat{\alpha}=\bar{y}$, so we can also centre y and then remove α from our objective function
- Different R packages have different defaults, e.g. glmnet also standardizes y
- Let $\tilde{y}=(y-1 \bar{y})$ and $\tilde{X}=\left(X-1 \bar{x}^{t}\right) \operatorname{diag}(1 / s)$ be the centered y and standardized X, respectively, with

$$
\begin{aligned}
& -\bar{y}=(1 / n) \sum_{i=1}^{n} y_{i}, \\
& -\bar{x}=(1 / n) X^{\prime} 1 \\
& -s=\left(s_{1}, \ldots, s_{p}\right)^{t} \text { and } s_{j}^{2}=(1 / n) \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2}
\end{aligned}
$$

- Compute the scaled coefficients

$$
\tilde{\beta}_{\lambda}=\left(\tilde{X}^{t} \tilde{X}+\lambda I_{p}\right)^{-1} \tilde{X}^{t} \tilde{y}
$$

- Transform back to unscaled coefficients

$$
\hat{\beta}_{\lambda}=\operatorname{diag}(1 / s) \tilde{\beta}_{\lambda} \quad \hat{\alpha}=\bar{y}-\bar{x}^{t} \hat{\beta}_{\lambda}
$$

Ridge computations and the SVD

Tuning parameter

- In many wide-data and other ridge applications, we need to treat λ as a tuning parameter, and select a good value for the problem at hand.
- For this task we have a number of approaches available for selecting λ from a series of candidate values:
- With a validation dataset separate from the training data, we can evaluate the prediction performance at each value of λ
- Cross-validation does this effciently using just the training data, and leave-one-out (LOO) CV is especially efficient

SVD

- Whatever the approach, they all require computing a number of solutions $\hat{\beta}_{\lambda}$ at different values of λ : the ridge regularization path
- We can achieve great efficiency via the (full form) Singular Value Decomposition (SVD)

$$
X=U D V^{t}
$$

where $U n \times n$ orthogonal, $V p \times p$ orthogonal and $D n \times p$ diagonal, with diagonal entries $d_{1} \geq \ldots \geq d_{m} \geq 0$, where $m=\min (n, p)$

- From the SVD we get

$$
\begin{align*}
\hat{\beta}_{\lambda} & =\left(V D^{t} U^{t} U D V^{t}+\lambda V V^{t}\right)^{-1} V D^{t} U^{t} y \tag{3}\\
& =V\left(D^{t} D+\lambda I_{p}\right)^{-1} D^{t} U^{t} y \\
& =\sum_{d_{j}>0} v_{j} \frac{d_{j}}{d_{j}^{2}+\lambda}\left\langle u_{j}, y\right\rangle
\end{align*}
$$

where $v_{j}\left(u_{j}\right)$ is the j th column of $V(U)$, and $\langle a, b\rangle=a^{t} b$

- Once we have the SVD of X, we have the ridge solution for all values of λ
- When $n>p$ the ridge solution with $\lambda=0$ is simply the OLS solution for β
- When $p>n$, there are infinitely many least squares solutions for β, all leading to a zero-residual solution. From (3) with $\lambda=0$ we get a unique solution, the one with minimum Euclidean norm
- Fitted values

$$
\begin{aligned}
\hat{y}_{\lambda} & =U \operatorname{diag}\left(\frac{d_{1}^{2}}{d_{1}^{2}+\lambda}, \ldots, \frac{d_{p}^{2}}{d_{p}^{2}+\lambda}\right) U^{t} y \\
& =\sum_{d_{j}>0} u_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda}\left\langle u_{j}, y\right\rangle
\end{aligned}
$$

Principal components regression

- Ridge

$$
\hat{\beta}_{\lambda}=V \operatorname{diag}\left(\frac{d_{1}}{d_{1}^{2}+\lambda}, \ldots, \frac{d_{p}}{d_{p}^{2}+\lambda}\right) U^{t} y
$$

- Principal components regression with q components

$$
\hat{\beta}_{q}=V \operatorname{diag}\left(\frac{1}{d_{1}}, \ldots, \frac{1}{d_{q}}, 0, \ldots, 0\right) U^{t} y
$$

- Both operate on the singular values, but where principal component regression thresholds the singular values, ridge regression shrinks them

Ridge and the bias-variance trade-off

Bias

- Assume that the data arise from a linear model $y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$, then $\hat{\beta}_{\lambda}$ will be a biased estimate of β. Throughout this section X is assumed fixed, $n>p$ and X has full column rank
- The ridge estimator can be expressed as

$$
\hat{\beta}_{\lambda}=\left(X^{t} X+\lambda I_{p}\right)^{-1} X^{t} X \hat{\beta}
$$

- We can get an explicit expression for the bias

$$
\begin{aligned}
\operatorname{Bias}\left(\hat{\beta}_{\lambda}\right) & =\mathbb{E}\left(\hat{\beta}_{\lambda}\right)-\beta \\
& =V \operatorname{diag}\left(\frac{\lambda}{d_{1}^{2}+\lambda}, \ldots, \frac{\lambda}{d_{p}^{2}+\lambda}\right) V^{t} \beta \\
& =\sum_{j=1}^{p} v_{j} \frac{\lambda}{d_{j}^{2}+\lambda}\left\langle v_{j}, \beta\right\rangle
\end{aligned}
$$

Variance

- Similarly there is a nice expression for the covariance matrix

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\beta}_{\lambda}\right) & =\sigma^{2} V \operatorname{diag}\left(\frac{d_{1}^{2}}{\left(d_{1}^{2}+\lambda\right)^{2}}, \ldots, \frac{d_{p}^{2}}{\left(d_{p}^{2}+\lambda\right)^{2}}\right) V^{t} \\
& =\sigma^{2} \sum_{j=1}^{p} \frac{d_{j}^{2}}{\left(d_{j}^{2}+\lambda\right)^{2}} v_{j} v_{j}^{t}
\end{aligned}
$$

- With $\lambda=0$, this is $\operatorname{Var}(\hat{\beta})=\sigma^{2}\left(X^{t} X\right)^{-1} \succeq \operatorname{Var}\left(\hat{\beta}_{\lambda}\right)$ for $\lambda>0$

Mean Squared Error

- MSE of the ridge regression estimator

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{\beta}_{\lambda}\right) & =\mathbb{E}\left[\left(\hat{\beta}_{\lambda}-\beta\right)^{t}\left(\hat{\beta}_{\lambda}-\beta\right)\right] \\
& =\operatorname{tr}\left[\operatorname{Var}\left(\hat{\beta}_{\lambda}\right)\right]+\operatorname{Bias}\left(\hat{\beta}_{\lambda}\right)^{t} \operatorname{Bias}\left(\hat{\beta}_{\lambda}\right)
\end{aligned}
$$

- Theorem (Theobald, 1974) There exists $\lambda>0$ such that $\operatorname{MSE}\left(\hat{\beta}_{\lambda}\right)<\operatorname{MSE}(\hat{\beta})$.

Expected prediction error

- When we make predictions $\hat{y}_{i}=x_{i}^{t} \hat{\beta}_{\lambda}$ at x_{i}

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{y}_{i}\right) & =\mathbb{E}\left[\left(x_{i}^{t} \hat{\beta}_{\lambda}-x_{i}^{t} \beta\right)^{2}\right] \\
& =x_{i}^{t} \operatorname{Var}\left(\hat{\beta}_{\lambda}\right) x_{i}+\left[x_{i}^{t} \operatorname{Bias}\left(\hat{\beta}_{\lambda}\right)\right]^{2}
\end{aligned}
$$

- Expected prediction error

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}^{\text {new }}\right)^{2}\right]=\frac{1}{n} \sum_{i=1}^{n} \operatorname{MSE}\left(\hat{y}_{i}\right)+\sigma^{2}
$$

Longley data

$$
n=16, p=6
$$

Orthonormal design matrix

- Consider an orthonormal design matrix X, i.e.

$$
X^{t} X=I_{p}=\left(X^{t} X\right)^{-1}, \text { e.g. }
$$

$$
X=\frac{1}{2}\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right]
$$

$-\hat{\beta}_{\lambda}=\frac{1}{(1+\lambda)} \hat{\beta}$
$-\operatorname{Var}\left(\hat{\beta}_{\lambda}\right)=\frac{\sigma^{2}}{(1+\lambda)^{2}} I_{p}$
$-\operatorname{MSE}\left(\hat{\beta}_{\lambda}\right)=\frac{p \sigma^{2}}{(1+\lambda)^{2}}+\frac{\lambda^{2}\|\beta\|^{2}}{(1+\lambda)^{2}}$ with minimum at $\lambda=\frac{p \sigma^{2}}{\|\beta\|^{2}}$

Ridge and leave-one-out cross validation

LOO

- For n-fold (LOO) CV, we have another beautiful result for ridge and other linear operators

$$
\mathrm{LOO}_{\lambda}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{t} \hat{\beta}_{\lambda}^{(-i)}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-x_{i}^{t} \hat{\beta}_{\lambda}}{1-R_{i i}^{\lambda}}\right)^{2}
$$

where $\hat{\beta}_{\lambda}^{(-i)}$ is the ridge estimate computed using the $(n-1)$ observations with the pair $\left(x_{i}, y_{i}\right)$ and

$$
R^{\lambda}=X\left(X^{t} X+\lambda I\right)^{-1} X^{t}
$$

- The equation says we can compute all the LOO residuals for ridge from the original residuals, each scaled up by $1 /\left(q-R_{i i}^{\lambda}\right)$
- We can obtain R^{λ} efficiently for all λ via

$$
R^{\lambda}=U \operatorname{diag}\left(\frac{d_{1}^{2}}{d_{1}^{2}+\lambda}, \ldots, \frac{d_{p}^{2}}{d_{p}^{2}+\lambda}\right) U^{t}
$$

- For each pair $\left(x_{i}, y_{i}\right)$ left out, we solve

$$
\min _{\beta} \sum_{l \neq i}\left(y_{l}-x_{l}^{t} \beta\right)+\lambda\|\beta\|^{2}
$$

with solution $\hat{\beta}_{\lambda}^{(-i)}$.

- Let $y_{i}^{*}=x_{i}^{t} \hat{\beta}_{\lambda}^{(-i)}$. If we insert the pair $\left(x_{i}, y_{i}^{*}\right)$ back into the size $n-1$ dataset, it will not change the solution
- Back at a full n dataset, and using the linearity of the ridge operator, we have

$$
y_{i}^{*}=\sum_{l \neq i} R_{i l}^{\lambda} y_{l}+R_{i i}^{\lambda} y_{i}^{*}=\sum_{l=1}^{n} R_{i l}^{\lambda} y_{l}-R_{i i}^{\lambda} y_{i}+R_{i i}^{\lambda} y_{i}^{*}=\hat{y}_{i}-R_{i i}^{\lambda} y_{i}+R_{i i}^{\lambda} y_{i}^{*}
$$

from which we see that $\left(y_{i}-y_{i}^{*}\right)=\left(y_{i}-\hat{y}_{i}\right) /\left(1-R_{i i}^{\lambda}\right)$

GCV

- The identity $\operatorname{tr}\left(R^{\lambda}\right)=\sum_{i=1}^{n} R_{i i}^{\lambda}$ suggests $R_{i i}^{\lambda} \approx \frac{1}{n} \operatorname{tr}\left(R^{\lambda}\right)$
- Generalized cross validation

$$
\operatorname{GCV}_{\lambda}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(y_{i}-x_{i}^{t} \hat{\beta}_{\lambda}\right)^{2}}{\left(1-\frac{1}{n} \operatorname{tr}\left(R^{\lambda}\right)\right)^{2}}
$$

Diabetes data

$$
n=442, p=10
$$

Ridge and the kernel trick

- The fitted values from ridge regression are

$$
\begin{equation*}
\hat{y}_{\lambda}=X\left(X^{t} X+\lambda I_{p}\right)^{-1} X^{t} y \tag{4}
\end{equation*}
$$

- An alternative way of writing this is suggested by the following

$$
\begin{aligned}
X^{t}\left(X X^{t}+\lambda I_{n}\right) & =\left(X^{t} X+\lambda I_{p}\right) X^{t} \\
\left(X^{t} X+\lambda I_{p}\right)^{-1} X^{t} & =X^{t}\left(X X^{t}+\lambda I_{n}\right)^{-1} \\
X\left(X^{t} X+\lambda I_{p}\right)^{-1} X^{t} y & =X X^{t}\left(X X^{t}+\lambda I_{n}\right)^{-1} y
\end{aligned}
$$

giving

$$
\begin{equation*}
\hat{y}_{\lambda}=K\left(K+\lambda I_{n}\right)^{-1} y \tag{5}
\end{equation*}
$$

where $K=X X^{t}=\left\{x_{i}^{t} x_{j}\right\}_{i j}$ is the $n \times n$ gram matrix of pairwise inner products, where x_{i}^{t} and x_{j}^{t} are the i th and j th row of X

- Complexity can be expressed in terms of floating point operations (flops) required to find the solution. (4) requires $O\left(n p^{2}+p^{3}\right)$ operations, (5) $O\left(p n^{2}+n^{3}\right)$ operations
- Suppose we want to add all pairwise interactions

$$
\begin{array}{r}
x_{i 1}, x_{i 2}, \ldots, x_{i p} \\
x_{i 1} x_{i 1}, x_{i 1} x_{i 2}, \ldots, x_{i 1} x_{i p} \\
\vdots \\
x_{i p} x_{i 1}, x_{i p} x_{i 2}, \ldots, x_{i p} x_{i p}
\end{array}
$$

giving $O\left(p^{2}\right)$ columns in the design matrix. Since (5) now requires $O\left(p^{2} n^{2}+n^{3}\right)$ operations, for large p it can be computationally prohibitive

- However, K can be computed directly with

$$
K_{i j}=\left(\frac{1}{2}+x_{i}^{t} x_{j}\right)^{2}-\frac{1}{4}=\sum_{k} x_{i k} x_{j k}+\sum_{k, l} x_{i k} x_{i l} x_{j k} x_{j l}
$$

this amounts to an inner product between vectors of the form

$$
\left(x_{i 1}, \ldots, x_{i p}, x_{i 1} x_{i 1}, \ldots, x_{i 1} x_{i p}, x_{i 2} x_{i 1}, \ldots, x_{i 2} x_{i p}, \ldots, x_{i p} x_{i p}\right)
$$

and it requires $O\left(p n^{2}\right)$ operations

