
Ridge regression
Statistical Learning
CLAMSES - University of Milano-Bicocca

Aldo Solari



References

– Hastie, T. (2020). Ridge regularization: an essential concept in
data science. Technometrics, 62(4), 426-433.

– van Wieringen (2015). Lecture notes on ridge regression. arXiv
preprint arXiv:1509.09169.



Condition number

– In the linear model, the estimate of β is obtained by solving the
normal equations

XTXβ = XTy

– The difficulty of solving this system of linear equations can be
described by the condition number

κ(XTX) =
dmax
dmin

the ratio between the largest and smallest singular values of
XTX

– If the condition number is very large, then the matrix is said to
be ill-conditioned (see Section 2.6 of CASL)



Toy linear model with n = p = 2. We set X and β as

X =

[
109 −1
−1 10−5

]
β =

[
1
1

]
And if we define y = Xβ, this gives

y =

[
109 −1
−1 10−5

] [
1
1

]
=

[
109 − 1
−0.99999

]

The reciprocal of condition number, i.e. 1/κ(XTX) = 9.998e− 29, is
smaller than (my) machine precision, i.e. 2.220446e− 16



X <- matrix(c(10^9, -1, -1, 10^(-5)), 2, 2)
beta <- c(1,1)
y <- X %*% beta

solve( crossprod(X), crossprod(X, y) )

Error in solve.default(crossprod(X)) :
system is computationally singular:
reciprocal condition number = 9.998e-29

.Machine$double.eps
2.220446e-16



Ridge regression solution

– Ridge provides a remedy for an ill-conditioned XtX matrix
– If our n× p design matrix X has column rank less than p (or

nearly so in terms of its condition number), then the usual
least-squares regression equation is in trouble:

β̂ = (XtX)−1Xty

– What we do is add a ridge on the diagonal - XtX+ λIp with
λ > 0 - which takes the problem away:

β̂λ = (XtX+ λIp)−1Xty

– This is the ridge regression solution proposed by Hoerl and
Kennard (1970)



– Ridge regression modifies the normal equations to

(XTX+ λIp)β = XTy

and the condition number of (XTX+ λIp) is

κ(XTX+ λIp) =
dmax + λ

dmin + λ

– Notice that even if dmin = 0, the condition number will be finite
if λ > 0

– This technique is known as Tikhonov regularization, after the
Russian mathematician Andrey Tikhonov



Penalized (Lagrange) form

– The optimization problem that ridge is solving

min
β

∥y− Xβ∥2 + λ∥β∥2 (1)

where ∥ · ∥ is the ℓ2 Euclidean norm
– The ridge remedy comes with consequences. The ridge estimate

is biased toward zero. It also has smaller variance than the OLS
estimate.

– Selecting λ amounts to a bias-variance trade-off



Cement data
n = 13, p = 4

R =


1 0.23 −0.82 −0.25

0.23 1 −0.14 −0.97
−0.82 −0.14 1 0.03
−0.25 −0.97 0.03 1



Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.41 70.07 0.89 0.40

x1 1.55 0.74 2.08 0.07
x2 0.51 0.72 0.70 0.50
x3 0.10 0.75 0.14 0.90
x4 -0.14 0.71 -0.20 0.84

R-squared: 0.9824

x1 x2 x3 x4
VIF 38.50 254.42 46.87 282.51

Piepel, Redgate (1998) A Mixture Experiment Analysis of the Hald Cement Data, The American Statistician, 52:23–30
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Constrained form

– We can also express the ridge problem as

min
β

∥y− Xβ∥2 subject to ∥β∥ ≤ c (2)

– The two problems are of course equivalent: every solution β̂λ in
(1) is a solution to (2) with c = ∥β̂λ∥





Overfitting
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Large estimates of β are often an indication of overfitting



Bayesian view

– Assume
yi|β,X = xi ∼ xtiβ + ϵi

with ϵi i.i.d. N(0, σ2
ϵ ). Here we think of β as random as well,

and having a prior distribution

β ∼ N(0, σ2
βIp)

– Then the negative log posterior distribution is proportional to
(1), with

λ =
σ2
ϵ

σ2
β

and the posterior mean is the ridge estimator
– The smaller the prior variance parameter σ2

β , the more the
posterior mean is shrunk toward zero, the prior mean for β



Important details



– When including an intercept term, we usually leave this
coefficient unpenalized, solving

min
α,β

∥y− 1α− Xβ∥2 + λ∥β∥2

– Ridge regression is not invariant under scale transformations of
the variables, so it is standard practice to centre each column of
X (hence making them orthogonal to the intercept term) and
then scale them to have Euclidean norm

√
n

– It is straightforward to show that after this standardisation of X,
α̂ = ȳ, so we can also centre y and then remove α from our
objective function

– Different R packages have different defaults, e.g. glmnet also
standardizes y



– Let ỹ = (y− 1ȳ) and X̃ = (X− 1x̄t)diag(1/s) be the centered y
and standardized X, respectively, with

– ȳ = (1/n)
∑n

i=1 yi,
– x̄ = (1/n)X′1,
– s = (s1, . . . , sp)t and s2j = (1/n)

∑n
i=1(xij − x̄j)2

– Compute the scaled coefficients

β̃λ = (X̃tX̃+ λIp)−1X̃tỹ

– Transform back to unscaled coefficients

β̂λ = diag(1/s)β̃λ α̂ = ȳ− x̄tβ̂λ



Ridge computations and the SVD



Tuning parameter

– In many wide-data and other ridge applications, we need to
treat λ as a tuning parameter, and select a good value for the
problem at hand.

– For this task we have a number of approaches available for
selecting λ from a series of candidate values:

– With a validation dataset separate from the training data, we
can evaluate the prediction performance at each value of λ

– Cross-validation does this effciently using just the training data,
and leave-one-out (LOO) CV is especially efficient



SVD

– Whatever the approach, they all require computing a number of
solutions β̂λ at different values of λ: the ridge regularization
path

– We can achieve great efficiency via the (full form) Singular
Value Decomposition (SVD)

X = UDVt

where U n× n orthogonal, V p× p orthogonal and D n× p
diagonal, with diagonal entries d1 ≥ . . . ≥ dm ≥ 0, where
m = min(n, p)



– From the SVD we get

β̂λ = (VDtUtUDVt + λVVt)−1VDtUty (3)
= V(DtD+ λIp)−1DtUty

=
∑
dj>0

vj
dj

d2j + λ
⟨uj, y⟩

where vj (uj) is the jth column of V (U), and ⟨a, b⟩ = atb

– Once we have the SVD of X, we have the ridge solution for all
values of λ

– When n > p the ridge solution with λ = 0 is simply the OLS
solution for β

– When p > n, there are infinitely many least squares solutions
for β, all leading to a zero-residual solution. From (3) with
λ = 0 we get a unique solution, the one with minimum
Euclidean norm



– Fitted values

ŷλ = Udiag
( d21
d21 + λ

, . . . ,
d2p

d2p + λ

)
Uty

=
∑
dj>0

uj
d2j

d2j + λ
⟨uj, y⟩



Principal components regression

– Ridge

β̂λ = Vdiag
( d1
d21 + λ

, . . . ,
dp

d2p + λ

)
Uty

– Principal components regression with q components

β̂q = Vdiag
( 1

d1
, . . . ,

1

dq
, 0, . . . , 0

)
Uty

– Both operate on the singular values, but where principal
component regression thresholds the singular values, ridge
regression shrinks them



Ridge and the bias-variance trade-off



Bias

– Assume that the data arise from a linear model y ∼ N(Xβ, σ2In),
then β̂λ will be a biased estimate of β. Throughout this section
X is assumed fixed, n > p and X has full column rank

– The ridge estimator can be expressed as

β̂λ = (XtX+ λIp)−1XtXβ̂

– We can get an explicit expression for the bias

Bias(β̂λ) = E(β̂λ)− β

= Vdiag
( λ

d21 + λ
, . . . ,

λ

d2p + λ

)
Vtβ

=

p∑
j=1

vj
λ

d2j + λ
⟨vj, β⟩



Variance

– Similarly there is a nice expression for the covariance matrix

Var(β̂λ) = σ2Vdiag( d21
(d21 + λ)2

, . . . ,
d2p

(d2p + λ)2
)Vt

= σ2

p∑
j=1

d2j
(d2j + λ)2

vjvtj

– With λ = 0, this is Var(β̂) = σ2(XtX)−1 ⪰ Var(β̂λ) for λ > 0



Mean Squared Error

– MSE of the ridge regression estimator

MSE(β̂λ) = E[(β̂λ − β)t(β̂λ − β)]

= tr[Var(β̂λ)] + Bias(β̂λ)tBias(β̂λ)

– Theorem (Theobald, 1974)
There exists λ > 0 such that MSE(β̂λ) < MSE(β̂).
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Expected prediction error

– When we make predictions ŷi = xtiβ̂λ at xi

MSE(ŷi) = E[(xtiβ̂λ − xtiβ)
2]

= xtiVar(β̂λ)xi + [xtiBias(β̂λ)]2

– Expected prediction error

E
[1
n

n∑
i=1

(ŷi − ynewi )2
]
=

1

n

n∑
i=1

MSE(ŷi) + σ2



Longley data

n = 16, p = 6
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Orthonormal design matrix

– Consider an orthonormal design matrix X, i.e.
XtX = Ip = (XtX)−1, e.g.

X =
1

2


−1 −1
−1 1
1 −1
1 1


– β̂λ = 1

(1+λ) β̂

– Var(β̂λ) = σ2

(1+λ)2
Ip

– MSE(β̂λ) = pσ2

(1+λ)2
+ λ2∥β∥2

(1+λ)2
with minimum at λ = pσ2

∥β∥2



Ridge and leave-one-out cross validation



LOO
– For n-fold (LOO) CV, we have another beautiful result for ridge

and other linear operators

LOOλ =
1

n

n∑
i=1

(yi − xtiβ̂
(−i)
λ )2 =

1

n

n∑
i=1

(yi − xtiβ̂λ
1− Rλii

)2

where β̂(−i)
λ is the ridge estimate computed using the (n− 1)

observations with the pair (xi, yi) and

Rλ = X(XtX+ λI)−1Xt

– The equation says we can compute all the LOO residuals for
ridge from the original residuals, each scaled up by 1/(q− Rλii)

– We can obtain Rλ efficiently for all λ via

Rλ = Udiag
( d21
d21 + λ

, . . . ,
d2p

d2p + λ

)
Ut



– For each pair (xi, yi) left out, we solve

min
β

∑
l ̸=i

(yl − xtlβ) + λ∥β∥2

with solution β̂
(−i)
λ .

– Let y∗i = xtiβ̂
(−i)
λ . If we insert the pair (xi, y∗i ) back into the size

n− 1 dataset, it will not change the solution
– Back at a full n dataset, and using the linearity of the ridge

operator, we have

y∗i =
∑
l̸=i

Rλilyl+Rλiiy
∗
i =

n∑
l=1

Rλilyl−Rλiiyi+Rλiiy
∗
i = ŷi−Rλiiyi+Rλiiy

∗
i

from which we see that (yi − y∗i ) = (yi − ŷi)/(1− Rλii)



GCV

– The identity tr(Rλ) =
∑n

i=1 R
λ
ii suggests Rλii ≈ 1

n tr(R
λ)

– Generalized cross validation

GCVλ =
1

n

n∑
i=1

(yi − xtiβ̂λ)
2

(1− 1
n tr(Rλ))2



Diabetes data

n = 442, p = 10
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Ridge and the kernel trick



– The fitted values from ridge regression are

ŷλ = X(XtX+ λIp)−1Xty (4)

– An alternative way of writing this is suggested by the following

Xt(XXt + λIn) = (XtX+ λIp)Xt

(XtX+ λIp)−1Xt = Xt(XXt + λIn)−1

X(XtX+ λIp)−1Xty = XXt(XXt + λIn)−1y

giving

ŷλ = K(K+ λIn)−1y (5)

where K = XXt = {xtixj}ij is the n× n gram matrix of pairwise
inner products, where xti and xtj are the ith and jth row of X

– Complexity can be expressed in terms of floating point
operations (flops) required to find the solution. (4) requires
O(np2 + p3) operations, (5) O(pn2 + n3) operations



– Suppose we want to add all pairwise interactions

xi1, xi2, . . . , xip
xi1xi1, xi1xi2, . . . , xi1xip

...
xipxi1, xipxi2, . . . , xipxip

giving O(p2) columns in the design matrix. Since (5) now
requires O(p2n2 + n3) operations, for large p it can be
computationally prohibitive

– However, K can be computed directly with

Kij = (
1

2
+ xtixj)

2 − 1

4
=

∑
k

xikxjk +
∑
k,l

xikxilxjkxjl

this amounts to an inner product between vectors of the form

(xi1, . . . , xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip)

and it requires O(pn2) operations


