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Bradley Efron working in his classic office, circa 1996.
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Regression
Gauss (1809), Galton (1877)

– Prediction: the prediction of new cases
e.g. random forests, boosting, support vector machines, neural
nets, deep learning

– Estimation: the estimation of regression surfaces
e.g. OLS, logistic regression, GLM (MLE)

– Attribution: the assignment of significance to individual
predictors
e.g. Fisher’s ANOVA, Neyman-Pearson



How do the pure prediction algorithms relate to traditional
regression methods?

That is the central question pursued in what follows.
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We will assume that the data D available to the statistician has this
structure:

D = {(xi, yi), i = 1, . . . , n}

– xi is a p-dimensional vector of predictors taking its value in a
known space X contained in Rp;

– yi is a real valued response;
– the n pairs are assumed to be independent of each other.

More concisely we can write

D = {X, y}

where X is the n× p matrix having xti as the ith row, and
y = (y1, . . . , yn)t.



Regression surface
– The regression model is

yi = s(xi, β) + ϵi i = 1, . . . , n (1)

ϵi
iid∼ N(0, σ2) where s(x, β) is some functional form that, for

any fixed value of the parameter vector β, gives expectation
µ = s(x, β) as a function of x ∈ X ;

– The regression surface is

S = {s(x, β), x ∈ X}

Most traditional regression methods depend on some sort of
surface plus noise formulation;

– The surface describes the scientific truths we wish to learn, but
we can only observe points on the surface obscured by noise;

– The statistician’s traditional estimation task is to learn as much
as possible about the surface from the data D.



The left panel of the Figure shows the surface representation of
Newton’s second law of motion,

acceleration = force / mass

The right panel shows a picture of what experimental data might
have looked like.



Galileo’s inclined plane experiment (1604)



– If a ball rolls down a ramp, what is the relationship between
time (x) and distance (y)?

– Aristotle: Constant velocity (zero acceleration): distance ∝ time
– Galileo : Increasing velocity (constant acceleration): distance ∝

time2

– Experimental data:

time 1 2 3 4 5 6 7 8
distance 33 130 298 526 824 1192 1620 2104

MacDougal, D. W. (2012). Galileo’s Great Discovery: How Things Fall. In
Newton’s Gravity (pp. 17-36). Springer
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https://github.com/aldosolari/SL/blob/master/docs/RCODE/EfronPEA.R



Cholesterol data

– Cholestyramine, a proposed cholesterol lowering drug, was
administered to 164 male doctors for an average of seven years
each (Efron and Feldman, 1991)

– The response variable (yi) is a man’s decrease in cholesterol
level over the course of the experiment.

– The single predictor is compliance (xi), the fraction of intended
dose actually taken. Compliance, the proportion of the intended
dose actually taken, ranged from 0% to 100%, –2.25 to 1.97 on
the normalized scale. It was hoped to see larger cholesterol
decreases for the better compliers.

– https://hastie.su.domains/CASI_files/DATA/cholesterol.html
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– A normal regression model was fit, with

s(xi, β) = β0 + β1xi + β2x2i + β3x3i

in other words, a cubic regression model.
– The black curve is the estimated surface

Ŝ = {s(x, β̂), x ∈ X}

fit by maximum likelihood or, equivalently, by ordinary least
squares (OLS).

– The vertical bars indicate one standard error for the estimated
values s(x, β̂), at 11 choices of x, showing how inaccurate Ŝ
might be as an estimate of the true S

– Only β̂0 and β̂1 were significantly nonzero. The adjusted R2 was
0.482, a traditional measure of the model’s predictive power.
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– Random Forests, Boosting, Deep Learning, etc.
– Data

D = {(xi, yi), i = 1, . . . , n}

– Prediction rule f(x,D)

– New (x, ?) gives ŷ = f(x,D)

– Strategy: Go directly for high predictive accuracy; forget
(mostly) about surface + noise
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The Prostate Cancer Microarray Study

– https://hastie.su.domains/CASI_files/DATA/prostate.html
– n = 102 men: 52 prostate cancer, 50 normal controls
– For each man measure activity of p = 6033 genes
– Data set D is 102× 6033 matrix (“wide”)
– Wanted: Prediction rule f(x,D) that inputs new 6033-vector x

and outputs ŷ correctly predicting cancer/normal



Random forest

– Randomly divide the 102 subjects into:
–  training set of 51 subjects (26 + 25)
–  test set of 51 subjects (26 + 25)

– Run R program randomForest on the training set
– Use its rule f(xi,D) on the test set and see how many errors it

makes
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Boosting
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– Importance measure is computed for each of the p predictor
variables.

– Of the p = 6033 genes, 129 had positive scores, these being the
genes that ever were chosen as splitting variables.

– Can we use the importance scores for attribution?
– The answer seems to be no. Removing the most important 100

had similarly minor effects on the number of test set prediction
errors

– Evidently there are a great many genes weakly correlated with
prostate cancer, which can be combined in different
combinations to give near-perfect predictions.
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Were the Test Sets Really a Good Test?

– Prediction can be highly context-dependent and fragile
– Before Randomly divided subjects into  training  and  test 
– Next:

– 51 earliest subjects for training (25 control + 26 cancer with
lowest ID numbers)

– 51 latest subjects for test
– Study subjects might have been collected in the order listed,

with some small methodological differences creeping in as time
progressed (concept drift)
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– The parametric models of traditional statistical methodology
enforce the smooth-world paradigm

– Looking back at the Cholesterol data, we might not agree with
the exact shape of the cholostyramine cubic regression curve
but the smoothness of the response seems unarguable

– The choice of cubic was made on the basis of a Cp comparison
of polynomial regressions degrees 1 through 8, with cubic best.

– Smoothness of response is not built into the pure prediction
algorithms.

– Random forest and algorithm gbm take X to be the 164× 8
matrix poly(c,8) - an 8th degree polynomial basis
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is cubic OLS; dashed green curve in right panel is 8th degree OLS fit.
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Traditional regressions methods Pure prediction algorithms
1. Surface plus noise models Direct prediction

(continuous, smooth) (possibly discrete, jagged)

2. Scientific truth Empirical prediction accuracy
(long-term ) (possibly short-term)

3. Parametric modeling Nonparametric
(causality) (black box)

4. Parsimonious modeling Anti-parsimony
(researchers choose covariates) (algorithm chooses predictors)

5. X n× p with p ≪ n p ≫ n , both possibly enormous
(homogeneous data) (mixed data)

6. Theory of optimal inference Training/test paradigm
(mle, Neyman–Pearson) (Common Task Framework)
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Estimation and Attribution in the Wide-Data Era
– Large p (the number of features) affects Estimation

– MLE can be badly biased for individual parameters
– “surface” if, say, p = 6033?

– Attribution still of interest. Compute p-value pi for the null
hypothesis Hi: no difference in gene expression between cancer
and control at the ith gene

– The Bonferroni threshold for 0.05 significance is

pi ≤ 0.05/6033

Pr(at least one Type I error) = Pr
( ∪
i∈I0

{pi ≤ α/p}
)

≤
∑
i∈I0

P(pi ≤ α/p) ≤ |I0|
α

p
≤ α

– Instead of performing a traditional attribution analysis with
p = 6033 predictors, a microarray analysis performs 6033
analyses with p = 1
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– Sparsity offers another approach to wide-data estimation and
attribution: we assume that most of the p predictor variables
have no effect and concentrate effort on finding the few
important ones.

– The lasso provides a key methodology. Estimate β, the p-vector
of regression coefficients, by minimizing

1

n

n∑
i=1

(yi − xtiβ) + λ∥β∥1

where ∥β∥1 =
∑p

j=1 |βj|
– Here λ is a fixed tuning parameter: λ = 0 corresponds to the

OLS solution for β (if p ≤ n) while λ = ∞ makes β̂ = 0. For
large values of λ only a few of the coordinates β̂j will be
nonzero.

– The lasso produced biased estimates of β, with the coordinate
values β̂j shrunk toward zero.
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– Making prediction algorithms better for scientific use
– smoother
– more interpretable

– Making traditional estimation/attribution methods better for
large-scale (n, p) problems

– more flexible
– better scaled

– We do have optimality theory for estimation (MLE) and
attribution (Neyman-Pearson), but we do not have an
optimality theory for prediction.
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Suppose we have fitted a Gaussian linear model based on the
training data (y,X), obtaining the estimates

β̂ = (XtX)−1Xty, σ̂2 = ∥y− Xβ̂∥2/(n− p)

There are (at least) two levels at which we can make predictions

1. A point prediction is a single best guess about what a new Y will
be when X = x

2. A prediction interval

Cα(x) = xtβ̂ ± t1−α/2
n−p σ̂

√
xt(XtX)−1x+ 1

for Y|X = x with (1− α) conditional coverage guarantee, i.e.

P(Y ∈ Cα(x)|X = x) = 1− α

where the probability is with respect to the training data
(X1, Y1), . . . , (Xn, Yn), and the new response Y at a fixed test
point X = x
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Marginal and conditional coverage

– (X, Y) ∈ Rp × R follows some unknown joint distribution PXY
– Training (X1, Y1), . . . , (Xn, Yn) and test (Xn+1, Yn+1) i.i.d. (X, Y)
– Cα satisfies distribution-free marginal coverage at level 1− α if

P(Yn+1 ∈ Cα(Xn+1)) ≥ 1− α ∀ PXY

where the probability is w.r.t. (X1, Y1), . . . , (Xn, Yn) and
(Xn+1, Yn+1)

– Cα satisfies distribution-free conditional coverage at level 1−α if

P(Yn+1 ∈ Cα(Xn+1)|Xn+1 = x) ≥ 1− α ∀ PXY, ∀ x

where the probability is w.r.t. (X1, Y1), . . . , (Xn, Yn), and Yn+1

at a fixed test point Xn+1 = x


From: Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty
quantification. arXiv preprint arXiv:2107.07511.
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Conformal Prediction

Conformal prediction (Vovk, Gammerman, Saunders, Vapnik,
1996-1999) is a general framework for constructing prediction sets
Ĉn with

1. Finite-sample coverage guarantee (exact)
2. For any data distribution (distribution-free)
3. For any predictive model (model-free)

P{Yn+1 ∈ Ĉn(Xn+1)} = 1− α

Two main limitations:

1. Marginal coverage
2. Exchangeability assumption


Full conformal and split conformal

Two main algorithms:

– Full conformal prediction
– Split conformal prediction

Inductive or split conformal prediction addresses the very high
computational cost of (full) conformal prediction, but at the cost of
introducing extra randomness due to a one-time random split of the
data.


Algorithm 1 Full conformal prediction
Require: Training (x1, y1), . . . , (xn, yn), test xn+1, algorithm µ̂, level

α, grid of values Y = {y, y′, y′′, . . .}
1: for y ∈ Y do
2: Train µ̂y(x) = µ̂(x; (x1, y1), . . . , (xn, yn), (xn+1, y))
3: Compute Ryi = |yi − µ̂y(xi)| for i = 1, . . . , n
4: Sort Ry1, . . . , R

y
n in increasing order: Ry(1) ≤ . . . ≤ Ry(n)

5: Compute Ryα = Ry(k) with k = ⌈(1− α)(n+ 1)⌉
6: Compute Ry = |y− µ̂y(xn+1)|
7: end for
8: Cα(xn+1) = {y ∈ Y : Ry ≤ Ryα}



– Assume that (Xi, Yi), i = 1, . . . , n+ 1 are i.i.d. from a
probability distribution PXY on the sample space Rp × R.
This is the only assumption of the method

– The prediction interval

Cα(xn+1) = {y ∈ R : Ry ≤ Ryα},

satisfies
P(Yn+1 ∈ Cα(Xn+1)) = 1− α

if and only if α ∈ {1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1)}
– Informally, the null hypothesis that the random variable Yn+1

will have the outcome y, i.e.

Hy : Yn+1 = y

is rejected when Ry > Ryα


Nonparametric Statistics

• Machine Learning has strong historical roots in Nonparametric
Statistics

• K-Nearest Neighbors was introduced by two statisticians
(students of Jerzy Neyman), Evelyn Fix and Joseph Hodges
(Fix and Hodges, 1951)

• Conformal Prediction turns out to have roots in Permutation
Testing (Fisher, 1925; Efron, 2021)


Prediction interval for Yn+1 Confidence interval for ∆
(VovK et al., 2005) (Lehmann, 1963)

Supervised learning Two-sample location shift model
Training set (X1, Y1), . . . , (Xn, Yn) X1, . . . ,Xn

i.i.d.∼ F(x)

Test point (Xn+1, Yn+1) Y1, . . . , Ym
i.i.d.∼ F(y−∆)

Hy : Yn+1 = y Hd : ∆ = d

(x1, y1), . . . , (xn, yn), (xn+1, y) x1, . . . , xn, y1 − d, . . . , ym − d

Ĉ = {y : p∗y > α} Ĉ = {d : p∗d > α}
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Algorithm 2 Split conformal prediction
Require: Training (x1, y1), . . . , (xn, yn), xn+1, algorithm µ̂, valida-

tion sample size m, level α
1: Split {1, . . . , n} into L of size w and I of size m = n− w
2: Train µ̂L(x) = µ̂(x; (xl, yl), l ∈ L)
3: Compute Ri = |yi − µ̂L(xi)| for i ∈ I
4: Sort {Ri, i ∈ I} in increasing order: R(1) ≤ . . . ≤ R(m)

5: Compute Rα = R(k) with k = ⌈(1− α)(m+ 1)⌉

Cα(xn+1) = {y ∈ R : |y− µ̂L(xn+1)| ≤ Rα}
= [µ̂L(xn+1)− Rα, µ̂L(xn+1) + Rα]


– Assume that (Xi, Yi), i = 1, . . . , n+ 1 are i.i.d. from a
probability distribution PXY on the sample space Rp × R

– The prediction interval

Cα(xn+1) = [µ̂L(xn+1)− Rα, µ̂L(xn+1) + Rα]

satisfies
P(Yn+1 ∈ Cα(Xn+1)) = 1− α

if and only if α ∈ {1/(m+ 1), 2/(m+ 1), . . . ,m/(m+ 1)}
– Note that in computing the critical value Rα = R(k) with

k = ⌈(1− α)(m+ 1)⌉, we need to have k ≤ m, which happens
if α ≥ 1/(m+1) (otherwise if k > m we need to set Rα = +∞)


Random Forest
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Smoothing splines
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Conformity scores

– In the previous algorithm we used a statistic, called conformity
score, which is the absolute value of the residual

Ri = |yi − µ̂L(xi)|, i ∈ I

where µ̂L is an estimator of E(Y | X) based on {(Xi, Yi), i ∈ L}
– The oracle knows the conditional distribution of Y | X. The

oracle prediction interval

C∗
α(x) = [qα/2(x), q1−α/2(x)]

where qγ(x) is the γ-quantile of Y | X = x, guarantees exact
conditional coverage

P(Y ∈ C∗
α(X)|X = x) = 1− α ∀ x



Suppose that(
Y
X

)
∼ N

((
µy
µx

)
,

(
σ2
y ρσxσy

ρσxσy σ2
x

))
then the conditional distribution of Y | X = x is

(Y|X = x) ∼ N
(
µy + ρ

σy
σx

(x− µx), σ
2
y(1− ρ2)

)
from which we can compute the quantile qγ(x)
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Conformal quantile regression

– Compute conformity scores

Ri = max
{
q̂γL(Xi)− Yi, Yi − q̂1−γ

L (Xi)
}
, i ∈ I

where q̂γL is an estimator of the γ-quantile of Y | X based on
{(Xi, Yi), i ∈ L}

– Sort {Ri, i ∈ I} in increasing order, obtaining R(1) ≤ . . . ≤ R(m),
and compute Rα = R(k) with k = ⌈(1− α)(m+ 1)⌉

– Compute the prediction interval

Cα(xn+1) = {y ∈ R : max
{
q̂γL(xn+1)− y, y− q̂1−γ

L (xn+i)
}
≤ Rα}

= [q̂γL(xn+1)− Rα, q̂
1−γ
L (xn+1) + Rα]

or Cα(xn+1) = ∅ if Rα < (1/2)(q̂γL(xn+1)− q̂1−γ
L (xn+1))
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– A very surprising result arises in a remarkably simple
estimation problem.

– Let X1, . . . ,Xp be independent random variables, with
Xi ∼ N(µi, 1) for i = 1, . . . , p. Writing X = (X1, . . . ,Xp)

t,
suppose we want to find a good estimator µ̂ = µ̂(X) of
µ = (µ1, . . . , µp)

t

– Squared error loss function:

L(µ̂, µ) = ∥µ̂− µ∥2 =
p∑

i=1

(µ̂i − µi)
2

where ∥ · ∥ denotes the Euclidean norm
– Risk function: R(µ̂, µ) = E[L(µ̂, µ)]



Inadmissible estimators
– If µ̂ and µ̃ are both estimators of µ, we say that µ̂ strictly

dominates µ̃ if R(µ̂, µ) ≤ R(µ̃, µ) for all µ, with strict inequality
for some value of µ. In this case we say that µ̃ is inadmissible.

– If µ̂ is not strictly dominated by any estimator of µ, it is said to
be admissible. Note that admissible estimators are not
necessarily sensible: for p = 1, the estimator µ̂ = 37 (which
ignores the data!) is admissible.

– On the other hand decision theory dictates that inadmissible
estimators can be discarded

– µ̂ = X is a very obvious estimator of µ: it is the maximum
likelihood estimator and the uniform minimum variance
unbiased estimator with

R(µ̂, µ) = p ∀ µ ∈ Rp

since ∥X− µ∥2 ∼ χ2
p



James-Stein estimator

– It has been proved that µ̂ = X is admissible for p = 1, 2

– James and Stein (1961) showed that the estimator

µ̂JS =

(
1− p− 2

∥X∥2

)
X

strictly dominates µ̂ = X for p ≥ 3:

R(µ̂JS, µ) = p− (p− 2)2E
(

1

∥X∥2

)
< p ∀ µ ∈ Rp



∥X∥2 =
∑p

i=1 X
2
i follows a noncentral χ2 distribution with p degrees

of freedom and noncentrality parameter ∥µ∥2. Using a result about
noncentral χ2 variables, we can write

∥X∥2 ∼ χ2
p+2K

where K ∼ Poisson(∥µ∥2/2).

E
(

1

∥X∥2

)
= E

(
1

χ2
p+2K

)
= E

{
E

(
1

χ2
p+2K

)
|K

}

= E
{

1

(p− 2) + 2K

}
≥ 1

(p− 2) + ∥µ∥2

with equality if µ = 0, where we used E(1/χ2
p) = 1/(p− 2) for

p > 2 and Jensen’s inequality. Then

R(µ̂JS, µ) ≤ p− p− 2

1 + ∥µ∥2/(p− 2)



Oracle linear estimator

– A linear estimator of the form

µ̃ = bX = (bX1, . . . , bXp)
t

with 0 ≤ b ≤ 1 shrinks X towards the origin
– The risk of a linear estimator is

R(µ̃, µ) = (1− b)2∥µ∥2 + b2p

minimized by

b∗ =
∥µ∥2

p+ ∥µ∥2

– The risk of the oracle linear estimator µ̃∗ = b∗X is

R(µ̃∗, µ) = p∥µ∥2/(p+ ∥µ∥2)
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– Geometrically, the James-Stein estimator shrinks each
component of X towards the origin, and the biggest
improvement comes when µ is close to zero

– For µ = 0 we have R(µ̂JS, 0) = 2 for all p ≥ 2

– As ∥µ∥2 → ∞, R(µ̂JS, µ) → p



Stein’s heuristic argument (1956)

– Stein argued that a good estimate should obey µ̂i ≈ µi for every
i. Thus we should also have µ̂2

i ≈ µ2
i , which further implies∑

i µ̂
2
i ≈

∑
i µ

2
i

– Consider the estimator µ̂ = X. For this estimator we have

E∥X∥2 = E
∑
i

X2
i = E

∑
i

(µi + Zi)2 = ∥µ∥2 + p

where Zi ∼ N(0, 1)

– This suggests that for large p, ∥X∥2 is likely to be considerably
larger than ∥µ∥2, and hence we may be able to obtain a better
estimator by shrinking the estimator µ̂ = X towards 0.



Positive James-Stein estimator

– If the shrinkage in µ̂JS is too large, it is possible that the
estimator switches to the other sign when ∥X∥2 < p− 2

– By precluding the possibility of a sign reversal, the positive JS
estimator

µ̂+
JS =

(
1− p− 2

∥X∥2

)
+

X

where (a)+ = max(a, 0) denotes the positive part
– µ̂+

JS further improves upon the µ̂JS estimate, i.e.,
R(µ̂+

JS, µ) < R(µ̂JS, µ) for all µ
– However, this estimator is not admissible either.



Shrinking toward an arbitrary point

– In terms of choosing a point to shrink towards, though, there is
nothing special about the origin, and we could equally well
shrink towards any pre-chosen m ∈ Rp using the estimator

µ̂m
JS = m+

(
1− p− 2

∥X−m∥2

)
(X−m)

– In this case, we have R(µ̂m
JS, µ−m) = R(µ̂JS, µ), so µ̂m

JS still
strictly dominates µ̂ = X



Correlated data

– Assume that X ∼ Np(µ,Σ) where Σ is a known covariance
matrix

– A a generalization of James-Stein estimator

µ̂Σ
JS =

(
1− c(p̃− 2)

XtΣ−1X

)
X

with 0 < c < 2 and p̃ = tr(Σ)/λmax(Σ) is the effective
dimension of the problem, where λmax(Σ) is the maximum
eigenvalue of Σ

– If p̃ > 2, then the generalization of the JS estimator µ̂Σ
JS

dominates the MLE µ̂ = X



Linear model

– We can apply the previous result to the case of linear regression
y ∼ Nn(Xβ, σ2In), where the MLE is the OLS estimator
β̂ = (XtX)−1Xty ∼ Np(β, σ

2(XtX)−1), so with µ = Xβ and
µ̂ = Xβ̂ we have R(µ̂, µ) = σ2p

– James-Stein estimator becomes

β̂JS =

(
1− (p− 2)σ2

β̂tXtXβ̂

)
β̂

– Letting µ̂JS = Xβ̂JS and µ = Xβ, the James–Stein Theorem
guarantees that

R(µ̂JS, µ) ≤ σ2p

no matter what β is, as long as p ≥ 3



– It is natural to ask how crucial the normality and squared error
loss assumptions are to the Stein phenomenon

– The normality assumption is not critical at all;
– The original result can also be generalised to different loss

functions, but there is an important caveat here: the Stein
phenomenon only holds when we are interested in
simultaneous estimation of all components of µ. If our loss
function were L(µ̂, µ) = (µ̂1 − µ1)

2 then we could not improve
on µ̂ = X



p = 5, µ = (
√

p/2,
√

p/2, 0, 0, 0)t, ∥µ∥2 = p

104 repetitions

Risk Risk1 Risk2 Risk3 Risk4 Risk5
MLE 5.00 1.01 1.01 1.00 0.98 0.99

JS 3.65 1.08 1.07 0.50 0.49 0.50

R(µ̂JS, µ) ≤ p− (p− 2)/(1 + p/(p− 2)) = 3.875



An Empirical Bayes interpretation



Bayesian setup

– Consider the Bayesian setup

µi ∼ N(0, τ2) X|µ ∼ N(µ, Ip) (1)

– Given the data X, the posterior of µ is

µ|X ∼ N(λX, λIp)

where λ = τ2/(1 + τ2)

– The Bayes estimator is simply the mean of the posterior

µ̂B = λX =

(
1− 1

1 + τ2

)
X

– Assuming (1), the Bayes risk is R(µ̂B, µ) = λp



Connection to James-Stein

– We cannot directly compute the shrinkage factor
λ = τ2/(1 + τ2), but perhaps we can estimate it using the data

– Since Xi = µi + Zi ∼ N(0, 1 + τ2), where Zi ∼ N(0, 1). This
implies ∥X∥2 ∼ (1 + τ2)χ2

p

– Combining this result with E[(p− 2)/χ2
p] = 1, we arrive at an

unbiased estimate for λ

λ̂ =

(
1− (p− 2)

∥X∥2

)
– Assuming (1), the Bayes risk is R(µ̂JS, µ) =

(
1 + 2

pτ2

)
R(µ̂B, µ)



p = 5, τ2 = 2, µi ∼ N(0, τ2)

104 repetitions

Bayes Risk B.Risk1 B.Risk2 B.Risk3 B.Risk4 B.Risk5
MLE 5.01 1.01 1.01 1.00 0.99 1.00

BAYES 3.34 0.67 0.68 0.67 0.67 0.66
JS 4.02 0.81 0.82 0.80 0.80 0.79

R(µ̂, µ) = 5, R(µ̂B, µ) = 3.33, R(µ̂JS, µ) = 4,



Shrinking Toward the Group Mean

– In practice, instead of arbitrarily picking some point, it might
instead make sense to chose m = X̄ as so as to adapt to the true
center of µi

– Consider the Bayesian setup

µi ∼ N(m, τ2) X|µ ∼ N(µ, Ip) (2)

with m and τ2 unknown
– The marginal distribution of our data is

Xi
i.i.d.∼ N(m, 1 + τ2)

and the posterior mean is

µ|X ∼ N(m+ λ(X−m), λIp)



– µ̂B = m+ λ(X−m) but m is unknown. Taking the empirical
Bayes approach, we can use the unbiased estimator X̄ in its
place

– Similarly, we can use the sample variance
S =

∑
i(Xi − X̄)2 ∼ (1 + τ2)χ2

p−1 to estimate λ. Now we have
E[(p− 3)/χ2

p−1] = 1

– This gives us the estimator

µ̂X̄
JS = X̄+

(
1− p− 3

S

)
(X− X̄)

If p > 3, this estimator dominates the MLE everywhere



A baseball data example



Player MLE TRUTH
1 0.34 0.30
2 0.33 0.35
3 0.32 0.22
4 0.31 0.28
5 0.29 0.26
6 0.29 0.27
7 0.28 0.30
8 0.26 0.27
9 0.24 0.23
10 0.23 0.26
11 0.23 0.26
12 0.22 0.21
13 0.22 0.26
14 0.22 0.27
15 0.21 0.32
16 0.21 0.23
17 0.20 0.28
18 0.14 0.20

The column labelled MLE is the batting average for 18 players in the 1970 season, using the
first 90 at bats.

The column labelled TRUTH is the batting average for the remainder of the 1970 season.



– Each player Batting average =( # hits / # at bats) value is a
binomial proportion

Yi ∼ Binomial(n, πi)/n

where πi is the true average and n = 90

– Since batting averages are binomial, we can use the normal
approximation

Yi ≈ N
(
πi,

πi(1− πi)

n

)
but the variance depends on the mean

– One solution is to make a variance stabilizing transformation

Xi = 2
√
n+ 0.5 arcsin

(√
nYi + 3/8

n+ 3/4

)
≈ N(µi, 1)

where µi = 2
√
n+ 0.5 arcsin(

√
nπi+3/8
90+3/4 )

– Inverted back yJSi = 1
n

[
(n+ 0.75)(sin( µ̂JS

i
2
√
n+0.5

))2 − 0.375

]
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Condition number

– In the linear model, the estimate of β is obtained by solving the
normal equations

XTXβ = XTy

– The difficulty of solving this system of linear equations can be
described by the condition number

κ(XTX) =
dmax
dmin

the ratio between the largest and smallest singular values of
XTX

– If the condition number is very large, then the matrix is said to
be ill-conditioned (see Section 2.6 of CASL)



Toy linear model with n = p = 2. We set X and β as

X =

[
109 −1
−1 10−5

]
β =

[
1
1

]
And if we define y = Xβ, this gives

y =

[
109 −1
−1 10−5

] [
1
1

]
=

[
109 − 1
−0.99999

]

The reciprocal of condition number, i.e. 1/κ(XTX) = 9.998e− 29, is
smaller than (my) machine precision, i.e. 2.220446e− 16



X <- matrix(c(10^9, -1, -1, 10^(-5)), 2, 2)
beta <- c(1,1)
y <- X %*% beta

solve( crossprod(X), crossprod(X, y) )

Error in solve.default(crossprod(X)) :
system is computationally singular:
reciprocal condition number = 9.998e-29

.Machine$double.eps
2.220446e-16



Ridge regression solution

– Ridge provides a remedy for an ill-conditioned XtX matrix
– If our n× p design matrix X has column rank less than p (or

nearly so in terms of its condition number), then the usual
least-squares regression equation is in trouble:

β̂ = (XtX)−1Xty

– What we do is add a ridge on the diagonal - XtX+ λIp with
λ > 0 - which takes the problem away:

β̂λ = (XtX+ λIp)−1Xty

– This is the ridge regression solution proposed by Hoerl and
Kennard (1970)



– Ridge regression modifies the normal equations to

(XTX+ λIp)β = XTy

and the condition number of (XTX+ λIp) is

κ(XTX+ λIp) =
dmax + λ

dmin + λ

– Notice that even if dmin = 0, the condition number will be finite
if λ > 0

– This technique is known as Tikhonov regularization, after the
Russian mathematician Andrey Tikhonov



Penalized (Lagrange) form

– The optimization problem that ridge is solving

min
β

∥y− Xβ∥2 + λ∥β∥2 (1)

where ∥ · ∥ is the ℓ2 Euclidean norm
– The ridge remedy comes with consequences. The ridge estimate

is biased toward zero. It also has smaller variance than the OLS
estimate.

– Selecting λ amounts to a bias-variance trade-off



Cement data
n = 13, p = 4

R =


1 0.23 −0.82 −0.25

0.23 1 −0.14 −0.97
−0.82 −0.14 1 0.03
−0.25 −0.97 0.03 1



Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.41 70.07 0.89 0.40

x1 1.55 0.74 2.08 0.07
x2 0.51 0.72 0.70 0.50
x3 0.10 0.75 0.14 0.90
x4 -0.14 0.71 -0.20 0.84

R-squared: 0.9824

x1 x2 x3 x4
VIF 38.50 254.42 46.87 282.51

Piepel, Redgate (1998) A Mixture Experiment Analysis of the Hald Cement Data, The American Statistician, 52:23–30
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Constrained form

– We can also express the ridge problem as

min
β

∥y− Xβ∥2 subject to ∥β∥ ≤ c (2)

– The two problems are of course equivalent: every solution β̂λ in
(1) is a solution to (2) with c = ∥β̂λ∥





Overfitting
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Bayesian view

– Assume
yi|β,X = xi ∼ xtiβ + ϵi

with ϵi i.i.d. N(0, σ2
ϵ ). Here we think of β as random as well,

and having a prior distribution

β ∼ N(0, σ2
βIp)

– Then the negative log posterior distribution is proportional to
(1), with

λ =
σ2
ϵ

σ2
β

and the posterior mean is the ridge estimator
– The smaller the prior variance parameter σ2

β , the more the
posterior mean is shrunk toward zero, the prior mean for β



Important details



– When including an intercept term, we usually leave this
coefficient unpenalized, solving

min
α,β

∥y− 1α− Xβ∥2 + λ∥β∥2

– Ridge regression is not invariant under scale transformations of
the variables, so it is standard practice to centre each column of
X (hence making them orthogonal to the intercept term) and
then scale them to have Euclidean norm

√
n

– It is straightforward to show that after this standardisation of X,
α̂ = ȳ, so we can also centre y and then remove α from our
objective function

– Different R packages have different defaults, e.g. glmnet also
standardizes y



– Let ỹ = (y− 1ȳ) and X̃ = (X− 1x̄t)diag(1/s) be the centered y
and standardized X, respectively, with

– ȳ = (1/n)
∑n

i=1 yi,
– x̄ = (1/n)X′1,
– s = (s1, . . . , sp)t and s2j = (1/n)

∑n
i=1(xij − x̄j)2

– Compute the scaled coefficients

β̃λ = (X̃tX̃+ λIp)−1X̃tỹ

– Transform back to unscaled coefficients

β̂λ = diag(1/s)β̃λ α̂ = ȳ− x̄tβ̂λ



Ridge computations and the SVD



Tuning parameter

– In many wide-data and other ridge applications, we need to
treat λ as a tuning parameter, and select a good value for the
problem at hand.

– For this task we have a number of approaches available for
selecting λ from a series of candidate values:

– With a validation dataset separate from the training data, we
can evaluate the prediction performance at each value of λ

– Cross-validation does this effciently using just the training data,
and leave-one-out (LOO) CV is especially efficient



SVD

– Whatever the approach, they all require computing a number of
solutions β̂λ at different values of λ: the ridge regularization
path

– We can achieve great efficiency via the (full form) Singular
Value Decomposition (SVD)

X = UDVt

where U n× n orthogonal, V p× p orthogonal and D n× p
diagonal, with diagonal entries d1 ≥ . . . ≥ dm ≥ 0, where
m = min(n, p)



– From the SVD we get

β̂λ = (VDtUtUDVt + λVVt)−1VDtUty (3)
= V(DtD+ λIp)−1DtUty

=
∑
dj>0

vj
dj

d2j + λ
⟨uj, y⟩

where vj (uj) is the jth column of V (U), and ⟨a, b⟩ = atb

– Once we have the SVD of X, we have the ridge solution for all
values of λ

– When n > p the ridge solution with λ = 0 is simply the OLS
solution for β

– When p > n, there are infinitely many least squares solutions
for β, all leading to a zero-residual solution. From (3) with
λ = 0 we get a unique solution, the one with minimum
Euclidean norm



– Fitted values

ŷλ = Udiag
( d21
d21 + λ

, . . . ,
d2p

d2p + λ

)
Uty

=
∑
dj>0

uj
d2j

d2j + λ
⟨uj, y⟩



Principal components regression

– Ridge

β̂λ = Vdiag
( d1
d21 + λ

, . . . ,
dp

d2p + λ

)
Uty

– Principal components regression with q components

β̂q = Vdiag
( 1

d1
, . . . ,

1

dq
, 0, . . . , 0

)
Uty

– Both operate on the singular values, but where principal
component regression thresholds the singular values, ridge
regression shrinks them



Ridge and the bias-variance trade-off



Bias

– Assume that the data arise from a linear model y ∼ N(Xβ, σ2In),
then β̂λ will be a biased estimate of β. Throughout this section
X is assumed fixed, n > p and X has full column rank

– The ridge estimator can be expressed as

β̂λ = (XtX+ λIp)−1XtXβ̂

– We can get an explicit expression for the bias

Bias(β̂λ) = E(β̂λ)− β

= Vdiag
( λ

d21 + λ
, . . . ,

λ

d2p + λ

)
Vtβ

=

p∑
j=1

vj
λ

d2j + λ
⟨vj, β⟩



Variance

– Similarly there is a nice expression for the covariance matrix

Var(β̂λ) = σ2Vdiag( d21
(d21 + λ)2

, . . . ,
d2p

(d2p + λ)2
)Vt

= σ2

p∑
j=1

d2j
(d2j + λ)2

vjvtj

– With λ = 0, this is Var(β̂) = σ2(XtX)−1 ⪰ Var(β̂λ) for λ > 0



Mean Squared Error

– MSE of the ridge regression estimator

MSE(β̂λ) = E[(β̂λ − β)t(β̂λ − β)]

= tr[Var(β̂λ)] + Bias(β̂λ)tBias(β̂λ)

– Theorem (Theobald, 1974)
There exists λ > 0 such that MSE(β̂λ) < MSE(β̂).
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Expected prediction error

– When we make predictions ŷi = xtiβ̂λ at xi

MSE(ŷi) = E[(xtiβ̂λ − xtiβ)
2]

= xtiVar(β̂λ)xi + [xtiBias(β̂λ)]2

– Expected prediction error

E
[1
n

n∑
i=1

(ŷi − ynewi )2
]
=

1

n

n∑
i=1

MSE(ŷi) + σ2



Longley data

n = 16, p = 6
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Orthonormal design matrix

– Consider an orthonormal design matrix X, i.e.
XtX = Ip = (XtX)−1, e.g.

X =
1

2


−1 −1
−1 1
1 −1
1 1


– β̂λ = 1

(1+λ) β̂

– Var(β̂λ) = σ2

(1+λ)2
Ip

– MSE(β̂λ) = pσ2

(1+λ)2
+ λ2∥β∥2

(1+λ)2
with minimum at λ = pσ2

∥β∥2



Ridge and leave-one-out cross validation



LOO
– For n-fold (LOO) CV, we have another beautiful result for ridge

and other linear operators

LOOλ =
1

n

n∑
i=1

(yi − xtiβ̂
(−i)
λ )2 =

1

n

n∑
i=1

(yi − xtiβ̂λ
1− Rλii

)2

where β̂(−i)
λ is the ridge estimate computed using the (n− 1)

observations with the pair (xi, yi) and

Rλ = X(XtX+ λI)−1Xt

– The equation says we can compute all the LOO residuals for
ridge from the original residuals, each scaled up by 1/(q− Rλii)

– We can obtain Rλ efficiently for all λ via

Rλ = Udiag
( d21
d21 + λ

, . . . ,
d2p

d2p + λ

)
Ut



– For each pair (xi, yi) left out, we solve

min
β

∑
l ̸=i

(yl − xtlβ) + λ∥β∥2

with solution β̂
(−i)
λ .

– Let y∗i = xtiβ̂
(−i)
λ . If we insert the pair (xi, y∗i ) back into the size

n− 1 dataset, it will not change the solution
– Back at a full n dataset, and using the linearity of the ridge

operator, we have

y∗i =
∑
l̸=i

Rλilyl+Rλiiy
∗
i =

n∑
l=1

Rλilyl−Rλiiyi+Rλiiy
∗
i = ŷi−Rλiiyi+Rλiiy

∗
i

from which we see that (yi − y∗i ) = (yi − ŷi)/(1− Rλii)



GCV

– The identity tr(Rλ) =
∑n

i=1 R
λ
ii suggests Rλii ≈ 1

n tr(R
λ)

– Generalized cross validation

GCVλ =
1

n

n∑
i=1

(yi − xtiβ̂λ)
2

(1− 1
n tr(Rλ))2



Diabetes data

n = 442, p = 10
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Ridge and the kernel trick



– The fitted values from ridge regression are

ŷλ = X(XtX+ λIp)−1Xty (4)

– An alternative way of writing this is suggested by the following

Xt(XXt + λIn) = (XtX+ λIp)Xt

(XtX+ λIp)−1Xt = Xt(XXt + λIn)−1

X(XtX+ λIp)−1Xty = XXt(XXt + λIn)−1y

giving

ŷλ = K(K+ λIn)−1y (5)

where K = XXt = {xtixj}ij is the n× n gram matrix of pairwise
inner products, where xti and xtj are the ith and jth row of X

– Complexity can be expressed in terms of floating point
operations (flops) required to find the solution. (4) requires
O(np2 + p3) operations, (5) O(pn2 + n3) operations



– Suppose we want to add all pairwise interactions

xi1, xi2, . . . , xip
xi1xi1, xi1xi2, . . . , xi1xip

...
xipxi1, xipxi2, . . . , xipxip

giving O(p2) columns in the design matrix. Since (5) now
requires O(p2n2 + n3) operations, for large p it can be
computationally prohibitive

– However, K can be computed directly with

Kij = (
1

2
+ xtixj)

2 − 1

4
=

∑
k

xikxjk +
∑
k,l

xikxilxjkxjl

this amounts to an inner product between vectors of the form

(xi1, . . . , xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip)

and it requires O(pn2) operations



Smoothing splines
Statistical Learning
CLAMSES - University of Milano-Bicocca

Aldo Solari



References

– Bowman, Evers. Lecture Notes on Nonparametric Smoothing.
Section 3

– Eilers, Marx (1996). Flexible smoothing with B-splines and
penalties. Statistical science, 11(2), 89–121.



Natural cubic spline

– A set of n points (xi, yi) can be exactly interpolated using a
natural cubic spline with the x1 < ... < xn as knots. The
interpolating natural cubic spline is unique.

– Amongst all functions on [a, b] which are twice continuously
differentiable and which interpolate the set of points (xi, yi), a
natural cubic spline with knots at the xi yields the smallest
roughness penalty ∫ b

a
(f ′′(x))2dx

– f ′′(x) is the second derivative of f with respect to x - it would be
zero if f were linear, so this measures the curvature of f at x.



Smoothing spline

– Smoothing splines circumvent the problem of knot selection by
performing regularized regression over the natural spline basis,
placing knots at all inputs x1, . . . , xn

– With inputs x1 < . . . < xn contained in an interval [a, b], the
minimiser of

f̂ = argmin
f∈C2

n∑
i=1

(yi − f(xi))2 + λ

∫ b

a
(f ′′(x))2dx

amongst all twice continuously differentiable functions on [a, b]
is given by a a natural cubic spline with knots in the unique xi



– The previous result tells us that we can choose natural cubic
spline basis B1, . . . , Bn with knots ξ1 = x1, . . . , ξn = xn and
solve

β̂λ = argmin
β

n∑
i=1

(yi −
n∑

j=1

βjBj(xi))2 + λ

∫ b

a

( n∑
j=1

βjB′′j (x)
)2

dx

to obtain the smoothing spline estimate f̂(x) =
∑n

i=1 β̂jBj(x)

– Rewriting

β̂λ = argmin
β

∥y− Bβ∥2 + λβtΩβ

where Bij = Bj(xi) and Ωjk =
∫
B′′j (x)B

′′
k(x)dx, shows the

smoothing spline problem to be a type of generalized ridge
regression problem with solution

β̂λ = (BtB+ λΩ)−1Bty



– Fitted values in Reinsch form

ŷ = B(BtB+ λΩ)−1Bty

= (In + λK)−1y

where K = (Bt)−1ΩB−1 does not depend on λ, and
S = (In + λK)−1 is the n× n smoothing matrix

– Leave-one-out cross validation

LOO =
1

n

n∑
i=1

(yi − ŷi
1− Sii

)2

– Generalized cross validation

GCV =
1

n

n∑
i=1

( yi − ŷi
1− tr(S)/n

)2

where tr(S) is the effective degrees of freedom
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Reinsch original solution

– The original Reinsch (1967) algorithm solves the constrained
optimization problem

f̂ = argmin
f∈C2

∫ b

a
(f ′′(x))2dx such that

n∑
i=1

(yi − f(xi))2 ≤ c

– The previous formulation with a Lagrange parameter on the
integral smoothing term instead of the least squares term is
equivalent

– See casl_smspline implementation in Section 2.6 of CASL



P-splines



B-spline basis

– The truncated power basis suffers from computational issues.
The B-spline basis is a re-parametrization of the truncated
power basis spanning an equivalent space

– The appearance of B-splines depends on their knot spacing, e.g.
– uniform B-splines on equidistant knots;
– non-uniform B-splines on unevenly spaced knots and repeated

boundary;
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B-spline basis

– B-splines can be computed as differences of truncated power
functions

– The general formula for equally-spaced knots is

Bj(x) =
(−1)M+1∆M+1fj(x,M)

hMM!

satisfying ∑
j

Bj(x) = 1

where fj(x,M) = (x− ξj)
M
+, h is is the distance between knots

and∆O is the Oth order difference with
∆fj(x,M) = fj(x,M)− fj−1(x,M),
∆2fj(x,M) = ∆(∆fj(x,M)) = fj(x,M)−2fj−1(x,M)+ fj−2(x,M)



P-splines

– There is an intermediate solution between regression and
smoothing splines, proposed more recently by Eilers and Marx
(1996)

– P-splines use a basis of (quadratic or cubic) B-splines, B,
computed on x and using equally-spaced knots. Minimize

∥y− Bβ∥2 + λ∥Dβ∥2

where D = ∆O is the matrix of Oth order differences, with
∆βj = βj − βj−1, ∆2βj = ∆(∆βj) = βj − 2βj−1 + βj−2 and so
on for higher O. Mostly O = 2 or O = 3 is used.

– Minimization leads to the system of equations

(BtB+ λDtD)β̂ = Bty
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Cross-validation

– We have that ŷ = B(BtB+ λDtD)−1Bty = Sy

–

LOO =
1

n

n∑
i=1

(yi − ŷ(−i)
i )2 =

1

n

n∑
i=1

(yi − ŷi
1− Sii

)2

–

GCV =
1

n

n∑
i=1

(yi − ŷi)2

(1− tr(S)/n)2

– We can compute the trace of R without actually computing its
diagonal, using

tr(S) = tr((BtB+ P)−1BtB) = tr(In−(BtB+ P)−1P)

where P = λDtD
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Three norms: ℓ0, ℓ1 and ℓ2

– Let’s consider three canonical choices: the ℓ0, ℓ1 and ℓ2 norms:

‖β‖0 =
p∑

j=1

1{βj 6= 0}, ‖β‖1 =
p∑

j=1

|βj|, ‖β‖2 =

√√√√ p∑
j=1

β2
j

– ℓ0 is not a proper norm: it does not satisfy positive
homogeneity, i.e. ‖aβ‖0 6= |a|‖β‖0 for a ∈ R



Constrained form

min
β∈Rp
‖y− Xβ‖22 subject to ‖β‖0 ≤ c Best Subset Selection

min
β∈Rp
‖y− Xβ‖22 subject to ‖β‖1 ≤ c Lasso Regression

min
β∈Rp
‖y− Xβ‖22 subject to ‖β‖22 ≤ c Ridge Regression



The “classic” illustration comparing lasso and ridge constraints.
From Chapter 3 of ESL



Sparsity

– Signal sparsity is the assumption that only a small number of
predictors have an effect, i.e. have βj 6= 0

– In this case we would like our estimator β̂ to be sparse,
meaning that β̂j = 0 for many components j ∈ {1, . . . , p}

– Sparse estimators are desirable because perform variable
selection and improve interpretability of the result

– The best subset selection and the lasso estimators are sparse,
the ridge estimator is not sparse



Penalized form

min
β∈Rp

1

2
‖y− Xβ‖22 + λ‖β‖0 Best Subset Selection

min
β∈Rp

1

2
‖y− Xβ‖22 + λ‖β‖1 Lasso Regression

min
β∈Rp

1

2
‖y− Xβ‖22 + λ‖β‖22 Ridge Regression



– Suppose that y ∼ N(µ, 1)
– ℓ0 penalty

min
µ

1

2
(y− µ)2 + λ1{µ 6= 0}, µ̂ = H√

2λ(y)

where Ha(y) = y1{|y| > a} is the hard-thresholding operator
– ℓ1 penalty

min
µ

1

2
(y− µ)2 + λ|µ|, µ̂ = Sλ(y)

where

Sa(y) =


y− a if y > a
0 if − a ≤ y ≤ a

y+ a if y < a

is the soft-thresholding operator
– ℓ2 penalty

min
µ

1

2
(y− µ)2 + λµ2, µ̂ =

( 1

1 + 2λ

)
y
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Hard and soft thresholding

– ℓ0 penalty creates a zone of sparsity but it is discontinuous
(hard thresholding)

– ℓ1 penalty creates a zone of sparsity but it is continuous (soft
thresholding)

– ℓ2 penalty creates a nice smooth estimator but it is never sparse



Orthogonal case

– Suppose XtX = Ip
– OLS estimator

β̂ = Xty

– BSS estimator
β̂ = H√

2λ(X
ty)

– Lasso estimator
β̂ = Sλ(Xty)

– Ridge estimator
β̂ =

( 1

1 + 2λ

)
Xty

where Ha(·), Sa(·) are the componentwise hard- and
soft-thresholding operators



g(b) =
1

2
‖y− Xb‖2 + λ‖b‖1

=
1

2
(yty+ btXtXb− 2btXty) + λ‖b‖1

=
1

2
yty+

1

2

p∑
j=1

{b2j − 2bjXty+ 2λ|bj|}

=
1

2
yty+

1

2

p∑
j=1

fj(bj)

We can minimize each quantity fj inside the sum independently.

Suppose bj ≥ 0 and remove the absolute value:

fj(bj) = b2j + 2bj(λ− Xt
jy)

To minimize this, take the derivative and set it equal to zero:

bj = Xt
jy− λ
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Convexity

– Consider using the norm ‖β‖q = (
∑q

j=1 |βj|q)1/q as a penalty.
Sparsity requires q ≤ 1 and convexity requires q ≥ 1. The only
norm that gives sparsity and convexity is q = 1

– The lasso and ridge regression are convex optimization problems,
best subset selection is not

– The ridge regression optimization problem is always strictly
convex for λ > 0

– The best subset selection optimization problem is N-P-complete
because of its combinatorial complexity (there are 2p subsets),
the worst kind of non convex problem



Forward Stepwise Selection

Greedy forward algorithm, sub-optimal but feasible alternative to
BSS and applicable when p > n

– Set S0 as the null model (intercept only)
– For k = 0, . . . ,min(n− 1, p− 1):

1. Consider all p− k models that augment the predictors in Sk with
one additional predictor

2. Choose the best among these p− k models and call it Sk+1,
where best is defined having the smallest RSS

– Select a single best model from among S0, S1, S2, . . . (e.g. using
Cp, BIC, Cross-Validation, validation set, etc.)
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The Lasso



The name “lasso” was also introduced as an acronym for Least
Absolute Selection and Shrinkage Operator (Tibshirani, 1996)

The lasso finds the solution (α̂, β̂) to the optimization problem

min
β∈Rp

1

2n
‖y− 1α− Xβ‖22 + λ‖β‖1



– Typically, we first standardize the predictors X so that each
column is centered ((1/n)

∑n
i=1 xij = 0) and has unit variance

((1/n)
∑n

i=1 x
2
ij = 1)

– Without standardization, the lasso solutions would depend on
the units (e.g., feet versus meters) used to measure the
predictors. On the other hand, we typically would not
standardize if the features were measured in the same units

– For convenience, we also assume that the outcome values yi
have been centered ((1/n)

∑n
i=1 yi = 0). Centering is

convenient, since we can omit the intercept term α in the lasso
optimization, and given the solution β̂

α̂ = ȳ−
p∑

j=1

x̄jβ̂j



– Lagrange form

1

2n
min
β∈Rp
‖y− Xβ‖22 + λ‖β‖1

– Intercept term omitted (center / scale the columns of X and y)
– The coefficient profiles for the lasso are continuous and

piecewise linear over the range of λ, with knots occurring
whenever the active set changes, or the sign of the coefficients
changes
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Boosting with componentwise linear least squares

– Response and predictors are standardized to have mean zero
and unit norm

– Initialize β̂(0) = 0

– For b = 1, . . . , B
– compute the residuals r = y− Xβ̂(b−1)

– find the predictor Xj most correlated with the residuals r
– update β̂(b−1) to β̂(b) with

β̂
(b)
j = β̂

(b−1)
j + ϵ · sj

where sj is the sign of the correlation
– This is known as forward stagewise regression and converges to

the least squares solution when n > p

– Forward stagewise regression with infinitesimally small
step-sizes, i.e. ϵ→ 0, produces a set of solutions which is
approximately equivalent to the set of Lasso solutions
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Convex optimization and the elastic net



Convex function

The objective function of the ℓ1 penalty, unlike the ℓ0 penalty, is a
continuous function in the regression vector. Not only is the
objective function continuous, it is also convex.

We say that a function f : Rp 7→ R convex if for any values b1 and b2
and quantity t ∈ [0, 1] we have

f(tb1 + (1− t)b2) ≤ tf(b1) + (1− t)f(b2)

Replacing the ≤ with < for t ∈ (0, 1) yields a definition of strict
convexity.

The ℓ1-penalized objective function is in fact convex (but not strictly
convex, which makes the solutions non-linear in the yi, and there is
no closed form solution as in ridge).



Convex optimization
A convex function does not have any local minima that are not also
global minima. In other words, if the value b0 minimizes f over a
neighborhood of b0, it must also minimize f over its entire domain.

To see this, assume that b1 is any point that is not a global minima
but set b2 equal to a global minima of f. Then, for any t ∈ [0, 1), we
have

tf(b1) + (1− t)f(b2) < tf(b1) + (1− t)f(b1) = f(b1)

and by convexity this implies that

f(tb1 + (1− t)b2) < f(b1)

For any neighborhood around b1 we can find t close enough to 1
such that tb1 + (1− t)b2 is in that neighborhood, and therefore b1
cannot be a local minimum.

The lack of local optima makes it possible to optimize convex
objective functions using e.g. the coordinate descent algorithm.



Elastic net

Define the objective function f for some λ > 0 and α ∈ [0, 1] as

f(β;λ, α) =
1

2n
‖y− Xβ‖22 + λ

(
(1− α)

1

2
‖β||22 + α‖β‖1

)
and the corresponding elastic net estimator as

β̂λ,α = argmin
β

f(β;λ, α)

Setting α to 1 yields the Lasso regression and setting it to 0 the ridge
regression.

Adding a small ℓ2-penalty preserves the variable selection and
convexity properties of the ℓ1-penalized regression, while reducing
the variance of the model when X contains sets of highly correlated
variables.



Coordinate descent

Coordinate descent is a general purpose convex optimization
algorithm particularly well-suited to solving the elastic net equation.

Coordinate descent successively minimizes the objective function
along each variable. In every step all but one variable is held
constant and a value for the variable of interest is chosen to
minimize the constrained problem.

This process is applied iteratively over all of the variables until the
algorithm converges.



Writing the problem in terms of the individual values of b:

f(b) =
1

2n

n∑
i=1

(yi −
p∑

j=1

xijbj)2 + λ

p∑
j=1

{1
2
(1− α)b2j + α|bj|}

Let b̃ be a vector of candidate values of the regression vector b and
assume b̃l > 0. Then the derivative of this function with respect to bl
at b = b̃ is

∂f
∂bl
|b=b̃ = −1

n

n∑
i=1

xil(yi −
p∑
j̸=l

xijb̃j − xilb̃l) + λ((1− α)b̃l + α)

= −1

n

n∑
i=1

xil(yi − ỹ(l)i ) +
1

n

n∑
i=1

x2ilb̃l + λ(1− α)b̃l + λα

where ỹ(l)i =
∑p

j̸=l xijb̃j is the contribution of all regressors in the
model except the lth.



By setting the function to zero and solving for b̃l resulting in

b̃l =
1
n
∑n

i=1 xil(yi − ỹ(l)i )− λα
1
n
∑n

i=1 x
2
il + λ(1− α)

We can then generalize this equation using the soft-thresholding
function as

b̃l ←
Sλα(1n

∑n
i=1 xil(yi − ỹ(l)i ))

1
n
∑n

i=1 x
2
il + λ(1− α)

The algorithm updates each of the values of b̃ based on the initial
guess of a p× 1 vector of zeros.



KKT conditions

The solution must satisfy the subgradient / Karush-Kuhn-Tuker
conditions

−1

n
〈Xj, y− Xb̂〉+ λsj = 0

n∑
i=1

xij(yi −
p∑

j=1

xijb̂j) = λsj

for j = 1, . . . , p, where

sj ∈


1 if b̂j > 0

[-1,1 ] if b̂j = 0

−1 if b̂j < 0

which means that if these conditions have not been met, then our b̂
vector cannot be optimal.



Cross-validation



Maximum λ

What values of λ should we use when performing cross-validation?
Consider the case that α = 1. From the coordinate descent updates

b̃j =
1

n
Xt
jy− λ

It follows that if |Xt
jy| ≤ nλ then b̃j = 0. The smallest value of λ  for

which all b̃j are zero is therefore:

λmax = max
j∈{1,...,p}

∣∣∣∣Xt
jy
n

∣∣∣∣



Minimum CV error and the 1se rule

– lambda.min: λ that minimize the cross-validation error
– lambda.1se: largest value of lambda such that error is within 1

standard error of the minimum (one standard error rule). To
compute cross-validation ”standard errors”

se = 1√
K
sd(Err−1, . . . , Err−K)

where Err−k denotes the error incurred in predicting the
observations in the k hold-out fold, k = 1, . . . ,K.
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Degrees of freedom

– Let A(λ) = {j ∈ {1, . . . , p} : β̂j(λ) 6= 0} denotes the active set
– The degrees of freedom of the Lasso are the

df(λ) = |A(λ)|

i.e. the size of the active set



Bayesian interpretation

– A Bayesian viewpoint assumes that β has a double-exponential
(Laplace) prior distribution with mean zero and scale parameter
a function of λ

(1/2τ) exp(−‖β‖1/τ)

with τ = 1/λ

– It follows that the posterior mode for β is the lasso solution
– However, the lasso solution is not the posterior mean and, in

fact, the posterior mean does not yield a sparse coefficient
vector



Extensions of the lasso



Group Lasso

– Suppose we have a partition G1, . . . ,Gq of {1, . . . , p}
– The group Lasso penalty (Yuan and Lin, 2006) is given by

λ

q∑
k=1

mk‖βGk‖2

The multipliers mk > 0 serve to balance cases where the groups
are of very different sizes; typically we choose mk =

√
|Gk|

– This penalty encourages either an entire group G to have
β̂G = 0 or β̂j 6= 0 for all j ∈ G

– Such a property is useful when groups occur through coding
for categorical predictors or when expanding predictors using
basis functions.



Relaxed Lasso

– Originally proposed by Meinshausen (2006). We present a
simplified version.

– Suppose β̂λ is the lasso solution at λ and let Â be the active set
of indices with nonzero coefficients in β̂λ

– Let β̂LS be the coeffcients in the least squares fit, using only the
variables in Â. Let β̂LS

λ be the full-sized version of this coeffcient
vector, padded with zeros. β̂LS

λ debiases the lasso, while
maintaining its sparsity.

– Define the Relaxed Lasso

β̂RELAX
λ = γβ̂λ + (1− γ)β̂LS

λ

with γ ∈ [0, 1] is an additional tuning parameter which can be
selected by cross-validation
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High-dimensional inference

– Consider the gaussian linear model

y ∼ Nn(1nβ0 + Xβ, σ2In)

with n× p design matrix X and p× 1 vector of coefficients β
– When p ≥ n, classical approaches for estimation and inference

of β cannot be directly applied
– How to perform inference on β (e.g. confidence intervals and

p-values for individual regression parameters βj, j = 1, . . . , p)
in a high-dimensional setting?



Support set

– The support set is

S = {j ∈ {1, . . . , p} : βj ̸= 0}

with cardinality s = |S|, and its complement is the null set, i.e.

N = {j ∈ {1, . . . , p} : βj = 0}

– Let Ŝ ⊆ {1, . . . , p} be an estimator of S. Then

|Ŝ ∩ N|

is the number of the wrong selections (type I errors) and

|S \ Ŝ|

is the number of wrong deselections (type II errors)



Error rates

– Define the False Discovery Proportion (FDP) by

FDP(Ŝ) = |Ŝ ∩ N|
|Ŝ|

with FDP(∅) = 0

– FamilyWise Error Rate (FWER)

P(FDP(Ŝ) > 0) = P(Ŝ ∩ N ̸= ∅)

– False Discovery Rate (FDR)

E(FDP(Ŝ))



Error control

– We would like to control the chosen error rate at level α, i.e.

P(Ŝ ∩ N ̸= ∅) ≤ α or E(FDP(Ŝ)) ≤ α

while maximizing some notion of power e.g. the average power

AvgPower =
∑

j∈S P(Ŝ ∈ j)

|S|

– We are dealing with the trade-off between type I and type II
errors, and since FWER is more stringent than FDR, i.e.

E(FDP(Ŝ)) ≤ P(Ŝ ∩ N ̸= ∅)

methods that control FWER are less powerful



Simulate data as described in Section 3.1 of Hastie et al. (2020)

Given n (number of observations), p (problem dimensions), s
(sparsity level), beta-type (pattern of sparsity), ρ (predictor
autocorrelation level), and ν (signal-to-noise ratio (SNR) level)

1. we define coefficients β ∈ Rp according to s and the beta-type;
e.g. beta-type 2: β has its first s components equal to 1, and the
rest equal to 0

2. we draw the rows of the predictor matrix X ∈ Rn×p i.i.d. from
Np(0,Σ), where Σ ∈ Rp×p has entry (i, j) equal to ρ|i−j|

(Toeplitz matrix)
3. we draw the response vector y ∈ Rn from Nn(Xβ, σ2In) with σ2

defined to meet the desired SNR level, i.e. σ2 = βtΣβ/ν



Lasso active set

Lasso with λ chosen by e.g. the 1-se rule

Ŝ = {j ∈ {1, . . . , p} : β̂j ̸= 0}

Simulated data with n = 200, p = 1000, s = 10, ρ = 0, ν = 2.5:

Size # Type I # Type II FDP Sensitivity
|Ŝ| |Ŝ ∩ N| |S \ Ŝ| |Ŝ ∩ N|/|Ŝ| |Ŝ ∩ S|/|S|

23 13 0 56.5% 100%



100 replications

1 2 3 4 5 6 7
Size 23 20 13 25 23 21 11

# Type I 13 10 3 15 13 11 4
# Type II 0 0 0 0 0 0 3

FDP 0.57 0.50 0.23 0.60 0.57 0.52 0.36
Sensitivity 1 1 1 1 1 1 0.7

FWER = 99%, FDR = 54.2%, AvgPower = 99.6%



Naïve two-step procedure

1. Perform the lasso in order to obtain the active set

M̂ = {j ∈ {1, . . . , p} : β̂j ̸= 0}

2. Use least squares to fit the submodel containing just the
variables in M̂, i.e. linear regression of the n× 1 response y on
the reduced n× |M̂| submatrix XM̂. Obtain

Ŝ = {j ∈ M̂ : pj ≤ α}

where pj is the p-value for testing the null hypothesis
Hj : βj = 0 in the linear model including only the selected
variables



Simulation with n = 200, p = 1000, s = 10, ρ = 0, ν = 2.5, α = 5%:

Size # Type I # Type II FDP Sensitivity
|Ŝ| |Ŝ ∩ N| |S \ Ŝ| |Ŝ ∩ N|/|Ŝ| |Ŝ ∩ S|/|S|

15 5 0 33.3% 100%

100 replications

1 2 3 4 5 6 7
Size 15 18 12 17 18 17 11

# Type I 5 8 2 7 8 7 4
# Type II 0 0 0 0 0 0 3

FDP 0.33 0.44 0.17 0.41 0.44 0.41 0.36
Sensitivity 1 1 1 1 1 1 0.7

FWER = 99%, FDR = 42.1%, AvgPower = 99.6%



j pj Selected
1 0.00 *
2 0.00 *
3 0.00 *
4 0.00 *
5 0.00 *
6 0.00 *
7 0.00 *
8 0.00 *
9 0.00 *

10 0.00 *
37 0.29
53 0.06

273 0.00 *
417 0.04 *
427 0.12
525 0.04 *
577 0.24
590 0.06
636 0.16
673 0.01 *
698 0.31
721 0.12
829 0.01 *



– The main problem with the naïve two-step procedure is that it
peeks at the data twice: once to select the variables to include
in M̂, and then again to test hypotheses associated with those
variables

– Here M̂ is a random variable (it is a function of the data), but
inference for linear model assumes it fixed (given a priori)

– A secondary problem is the multiplicity of the tests performed
– A simple idea is to use data-splitting to break up the dependence

of variable selection and hypothesis testing (Cox, 1975)



Data-split



The single-split approach (Wasserman and Roeder, 2009) splits the
data into two parts I and L of equal sizes nI = nL = n/2:

1. Use variable selection on the L portion (XL, yL) to obtain

M̂L ⊆ {1, . . . , p}

2. Use the I portion (XI, yI) for constructing p-values

pj =
{

pIj if j ∈ M̂L

1 if j /∈ M̂L

where pIj is the p-value testing Hj : βj = 0 in the linear model
including only the selected variables, i.e. based on the linear
regression of the reduced nI × 1 response yI on the reduced
nI × |M̂L| matrix XI

M̂L



3. Adjust the p-values for their multiplicity |M̂L|, by e.g.
Bonferroni

p̃j = min(|M̂L| · pj, 1), j = 1, . . . , p

4. Selected variables

S̃ = {j ∈ M̂L : p̃j ≤ α}



j pLj pIj p̃Ij Selected
1 0.00 0.08 1.00
2 0.00 0.00 0.00 *
3 0.00 0.00 0.00 *
4 0.03 0.01 0.09
6 0.00 0.00 0.00 *
8 0.00 0.00 0.01 *
9 0.16 0.00 0.00 *

10 0.00 0.00 0.00 *
37 0.03 0.38 1.00

390 0.15 0.79 1.00
398 0.01 0.21 1.00
720 0.24 0.04 0.60
721 0.02 0.82 1.00
742 0.04 0.21 1.00
824 0.02 0.24 1.00
829 0.01 0.38 1.00
943 0.15 0.66 1.00



Theorem
Assume that

1. the linear model y ∼ Nn(1β0 + Xβ, σ2I) holds

2. the variable selection procedure satisfies the screening property for
the first half of the sample, i.e.

P(M̂L ⊇ S) ≥ 1− δ

for some δ ∈ (0, 1).

3. The reduced design matrix for the second half of the sample
satisfies rank(XI

M̂L) = |M̂L|.
Then the single-split procedure yields FWER control at α against
inclusion of null predictors up to the additional (small) value δ, i.e.

P(S̃ ∩ N ̸= ∅) ≤ α+ δ



Proof.
Let E = {M̂L ⊇ S} with P(Ec) ≤ δ by assumption. If E happens, then
pIj is a valid p-value, i.e. P(pIj ≤ u|E) ≤ u for j ∈ N ∩ M̂L. We have

P(S̃ ∩ N ̸= ∅) = P(
∪

j∈M̂L∩N

{p̃j ≤ α})

= P(
∪

j∈M̂L∩N

{p̃j ≤ α}|E)P(E) + P(
∪

j∈M̂L∩N

{p̃j ≤ α}|Ec)P(Ec)

≤
[ ∑
j∈M̂L∩N

P(pIj ≤
α

|M̂L|
|E)

]
P(E) + P(

∪
j∈M̂L∩N

1{p̃j ≤ α}|Ec)P(Ec)

≤ |M̂L ∩ N| α

|M̂L|
· 1 + 1 · δ

≤ α+ δ



P-value lottery

A major problem of the single data-splitting method is that different
data splits lead to different p-values
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Multi-split

The multi-split approach (Meinshausen et al., 2009)

1. For b = 1, . . . , B
apply the single-split procedure (Lb, Ib) to obtain

{p̃bj , j = 1, . . . , p}

2. Aggregate the p-values as

p̄j = 2 ·median(p̃1j , . . . , p̃Bj ), j = 1, . . . , p

3. Selected predictors:

S̄ = {j ∈ {1, . . . , p} : p̄j ≤ α}
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Simultaneous confidence intervals

P(βj ∈ [L̂j, Ûj] ∀j ∈ {1, . . . , p}) ≥ 1− α

j L̂j Ûj

1 -∞ ∞
2 0.69 1.84
3 0.48 1.73
4 0.36 1.49
5 0.47 1.70
6 0.56 1.78
7 0.27 1.57
8 0.40 1.69
9 0.41 1.56

10 0.44 1.56
11 -∞ ∞
· · ·



Stability Selection
Statistical Learning
CLAMSES - University of Milano-Bicocca

Aldo Solari



References

– Meinshausen, Buhlmann (2010). Stability selection. JRSS-B,
72:417–473

– Shah, Samworth (2013). Variable selection with error control:
another look at stability selection. JRSS-B, 75:55–80.



Stability path

– The regularisation path of the lasso is

{β̂j(λ), j = 1, . . . , p, λ ∈ Λ}

– The stability path is

{π̂j(λ), j = 1, . . . , p, λ ∈ Λ}

where π̂j(λ) is the estimated probability for the jth predictor to
be selected by the lasso(λ) when randomly resampling from the
data
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Algorithm 1 Stability Path Algorithm with the Lasso

Require: B ∈ N, Λ grid, τ ∈ (0.5, 1)
1: for b = 1, . . . , B do
2: Randomly select n/2 indices from {1, . . . , n};
3: Perform the lasso on the n/2 observations to obtain

Ŝn/2(λ) = {j : β̂j(λ) ̸= 0} ∀ λ ∈ Λ

4: end for
5: Compute the relative selection frequencies:

π̂j(λ) =
1

B

B∑
b=1

1{j ∈ Ŝn/2(λ)} ∀ λ ∈ Λ

6: The set of stable predictors is given by

Ŝstab = {j : max
λ∈Λ

π̂j(λ) ≥ τ}



Algorithm 2 (Complementary Pairs) Stability Selection

Require: A variable selection procedure Ŝn, B ∈ N, τ ∈ (0.5, 1)
1: for b = 1, . . . , B do
2: Split {1, . . . , n} into (I2b−1, I2b) of size n/2, and for each get

Ŝ2b−1
n/2 ⊆ {1, . . . , p}, Ŝ2bn/2 ⊆ {1, . . . , p}

3: end for
4: Compute the relative selection frequencies:

π̂j =
1

2B

B∑
b=1

(
1{j ∈ Ŝ2b−1

n/2 }+ 1{j ∈ Ŝ2bn/2}
)

5: The set of stable predictors is given by

Ŝstab = {j : π̂j ≥ τ}



– The relative selection frequency π̂j is an unbiased estimator of

π
n/2
j = P(j ∈ Ŝn/2)

but, in general, a biased estimator of

πn
j = P(j ∈ Ŝn) = E(1{j ∈ Ŝn})

– The key idea of stability selection is to improve on the simple
estimator 1{j ∈ Ŝn} of πn

j through subsampling.
– By means of averaging involved in Ŝstab, we hope that π̂j will

have reduced variance compared to 1{j ∈ Ŝn} and this
increased stability will more than compensate for the bias
incurred.



Theorem
Assume that

1. {1{j ∈ Ŝn/2}, j ∈ N} is exchangeable;

2. The variable selection procedure is not worse than random
guessing, i.e.

E(|Ŝn/2 ∩ S|)
E(|Ŝn/2 ∩ N|)

≥ |S|
|N|

.

Then, for τ ∈ (1/2, 1]

E(|Ŝstab ∩ N|) ≤ 1

(2τ − 1)

q2

p

where q = E(|Ŝn/2|)



– The choice of the number of subsamples B is of minor
importance

– It is possible to fix q = E(|Ŝn/2|) and run the variable selection
procedure until it selects q variables. However, if q is too small,
one would select only a subset of the signal variables as

|Ŝstab| ≤ |Ŝn/2| = q

– For example, with p = 1000, q = 50 and τ = 0.6 then

E(|Ŝstab ∩ N|) ≤ 12.5
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There are two main approaches:

– Fixed-X knockoffs
Requires that X is full rank with n ≥ 2p

– Model-X knockoffs
Requires assumptions on X but works with p > n



Fixed-X knockoffs
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Main idea

– For each feature Xj, construct a knockoff copy X̃j

– Knockoffs X̃1, . . . , X̃p are independent of y and mimic the
original variables X1, . . . ,Xp if they were null
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Knockoff construction

– Suppose without loss of generality that the features are
centered and scaled such that ∥Xj∥22 = 1 for all j

– Let Σ = XtX be the correlation matrix of the features
– The method begins by augmenting the design matrix X with a

second matrix X̃ ∈ Rn×p of knockoff variables, constructed to
satisfy

G = [X X̃]t[X X̃] =

[
XtX XtX̃
X̃tX X̃tX̃

]
=

[
Σ Σ− D

Σ− D Σ

]
for some diagonal matrix D = diag(d1, . . . , dp) such that G is
positive definite



– The knockoffs have the same correlation structure as the
original features

X̃tX̃ = XtX = Σ

– The correlation between X̃k and Xj is

X̃t
jXk = Xt

jXk ∀ k ̸= j

– The correlation between X̃j and Xj is

X̃t
jXj = 1− dj

with dj as close to 1 as possible



Equi-correlated knockoffs

Suppose we require dj = d for all j. Define

X̃ = X(Ip − dΣ−1) + UC

where

– U ∈ Rn×p is an orthonormal matrix such that UtX = 0

– C ∈ Rp×p from the Cholesky decomposition of

CtC = 4((d/2)Ip − (d/2)2Σ−1)

This approach corresponds to method="equi" in the knockoff
package. A semidefinite programming approach is used to
determine the values that minimize

∑p
j=1(1− dj) subject to the

constraints (method="sdp")



The knockoff statistics

– Fit the lasso to the augmented design matrix [X X̃] for λ ∈ Λ

– Let [β̂(λ) β̃(λ)], λ ∈ Λ denote the coefficient estimates
– Compute

Zj = sup{λ ∈ Λ : β̂j(λ) ̸= 0} = first time Xj enters the lasso path
Z̃j = sup{λ ∈ Λ : β̃j(λ) ̸= 0} = first time X̃j enters the lasso path

– Then define the statistics

Wj = max(Zj, Z̃j)·sign(Zj−Z̃j) =


Zj if Xj enters first (Zj > Z̃j)
0 if Zj = Z̃j

−Z̃j if X̃j enters first (Zj < Z̃j)



FDP estimate

– For some threshold τ ≥ 0, select

Ŝτ = {j ∈ {1, . . . , p} : Wj ≥ τ}

– The knockoff estimate of the FDP is

FDP(Ŝτ ) =
#{j ∈ N : Wj ≥ t}
#{j : Wj ≥ t}

≈
#{j ∈ N : Wj ≤ −t}

#{j : Wj ≥ t}

≤
1 + #{j : Wj ≤ −t}

#{j : Wj ≥ t}
= F̂DP(Ŝτ )
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The knockoff procedure chooses a data-dependent threshold

τ̂ = min
{
τ > 0 : F̂DP(Ŝτ ) ≤ α

}
with τ̂ = +∞ if no such τ exists.

Theorem
For any α ∈ (0, 1), the knockoff procedure selects

Ŝτ̂ = {j ∈ {1, . . . , p} : Wj ≥ τ̂}

with the guarantee that

FDR(Ŝτ̂ ) = E

(
|N ∩ Ŝτ̂ |
|Ŝτ̂ |

)
≤ α

where the expectation is taken over ε in the Gaussian linear model
y = Xβ + ε while treating X and X̃ as fixed.



Variable importance statistics

– Fit the Random Forest to the augmented design matrix [X X̃]

– Compute

Zj = VariableImportance(Xj)

Z̃j = VariableImportance(X̃j)

The importance of a variable is measured as the total decrease
in node impurities from splitting on that variable, averaged
over all trees

– Then define the statistics

Wj = abs(Zj)− abs(Z̃j)



0 50 100 150 200

−
0.

00
10

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

Index j

W

0.0000 0.0005 0.0010 0.0015 0.0020

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

F
D

P

True
Estimate
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Model-X knockoff



Modeling X

– X is treated as a random matrix with i.i.d. rows xi
– (xi, yi), i = 1, . . . , n are i.i.d. from some unknown distribution
– Assume we know the marginal distribution of xi, e.g.

xi = (xi1, . . . , xip) ∼ Np(µ,Σ)

– Null features given by conditional independence

N = {j ∈ {1, . . . , p} : y ⊥⊥ xj|x−j}

where x−j = {x1, . . . , xp} \ {xj}



Knockoffs in the Gaussian case

– The joint distribution of original features and knockoff copies
satisfies

[x x̃] ∼ N(M,V) with M =

[
µ
µ

]
, V =

[
Σ Σ− D

Σ− D Σ

]
where D = diag(d1, . . . , dp) such that V is positive definite

– Draw a random x̃i from the conditional distribution x̃i|xi, which
is normal with

E(x̃i|xi) = µ+ (Σ− D)Σ−1(xi − µ)

Var(x̃i|xi) = Σ− (Σ− D)Σ−1(Σ− D)

– If µ and Σ are unknown, replace by estimates µ̂ and Σ̂
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