
Sparse Modeling:
Best Subset and the Lasso
Statistical Learning
CLAMSES - University of Milano-Bicocca

Aldo Solari



References

– Tibshirani, Wasserman (2017). Sparsity, the Lasso, and Friends.
Lecture notes on Statistical Machine Learning



Three norms: ℓ0, ℓ1 and ℓ2

– Let’s consider three canonical choices: the ℓ0, ℓ1 and ℓ2 norms:

‖β‖0 =
p∑

j=1

1{βj 6= 0}, ‖β‖1 =
p∑

j=1

|βj|, ‖β‖2 =

√√√√ p∑
j=1

β2
j

– ℓ0 is not a proper norm: it does not satisfy positive
homogeneity, i.e. ‖aβ‖0 6= |a|‖β‖0 for a ∈ R



Constrained form

min
β∈Rp
‖y− Xβ‖22 subject to ‖β‖0 ≤ c Best Subset Selection

min
β∈Rp
‖y− Xβ‖22 subject to ‖β‖1 ≤ c Lasso Regression

min
β∈Rp
‖y− Xβ‖22 subject to ‖β‖22 ≤ c Ridge Regression



The “classic” illustration comparing lasso and ridge constraints.
From Chapter 3 of ESL



Sparsity

– Signal sparsity is the assumption that only a small number of
predictors have an effect, i.e. have βj 6= 0

– In this case we would like our estimator β̂ to be sparse,
meaning that β̂j = 0 for many components j ∈ {1, . . . , p}

– Sparse estimators are desirable because perform variable
selection and improve interpretability of the result

– The best subset selection and the lasso estimators are sparse,
the ridge estimator is not sparse



Penalized form

min
β∈Rp

1

2
‖y− Xβ‖22 + λ‖β‖0 Best Subset Selection

min
β∈Rp

1

2
‖y− Xβ‖22 + λ‖β‖1 Lasso Regression

min
β∈Rp

1

2
‖y− Xβ‖22 + λ‖β‖22 Ridge Regression



– Suppose that y ∼ N(µ, 1)
– ℓ0 penalty

min
µ

1

2
(y− µ)2 + λ1{µ 6= 0}, µ̂ = H√

2λ(y)

where Ha(y) = y1{|y| > a} is the hard-thresholding operator
– ℓ1 penalty

min
µ

1

2
(y− µ)2 + λ|µ|, µ̂ = Sλ(y)

where

Sa(y) =


y− a if y > a
0 if − a ≤ y ≤ a

y+ a if y < a

is the soft-thresholding operator
– ℓ2 penalty

min
µ

1

2
(y− µ)2 + λµ2, µ̂ =

( 1

1 + 2λ

)
y
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Hard and soft thresholding

– ℓ0 penalty creates a zone of sparsity but it is discontinuous
(hard thresholding)

– ℓ1 penalty creates a zone of sparsity but it is continuous (soft
thresholding)

– ℓ2 penalty creates a nice smooth estimator but it is never sparse



Orthogonal case

– Suppose XtX = Ip
– OLS estimator

β̂ = Xty

– BSS estimator
β̂ = H√

2λ(X
ty)

– Lasso estimator
β̂ = Sλ(Xty)

– Ridge estimator
β̂ =

( 1

1 + 2λ

)
Xty

where Ha(·), Sa(·) are the componentwise hard- and
soft-thresholding operators



g(b) =
1

2
‖y− Xb‖2 + λ‖b‖1

=
1

2
(yty+ btXtXb− 2btXty) + λ‖b‖1

=
1

2
yty+

1

2

p∑
j=1

{b2j − 2bjXty+ 2λ|bj|}

=
1

2
yty+

1

2

p∑
j=1

fj(bj)

We can minimize each quantity fj inside the sum independently.

Suppose bj ≥ 0 and remove the absolute value:

fj(bj) = b2j + 2bj(λ− Xt
jy)

To minimize this, take the derivative and set it equal to zero:

bj = Xt
jy− λ
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Solution paths of ℓ0, ℓ1 and ℓ2 penalties as a function of λ



Convexity

– Consider using the norm ‖β‖q = (
∑q

j=1 |βj|q)1/q as a penalty.
Sparsity requires q ≤ 1 and convexity requires q ≥ 1. The only
norm that gives sparsity and convexity is q = 1

– The lasso and ridge regression are convex optimization problems,
best subset selection is not

– The ridge regression optimization problem is always strictly
convex for λ > 0

– The best subset selection optimization problem is N-P-complete
because of its combinatorial complexity (there are 2p subsets),
the worst kind of non convex problem



Forward Stepwise Selection

Greedy forward algorithm, sub-optimal but feasible alternative to
BSS and applicable when p > n

– Set S0 as the null model (intercept only)
– For k = 0, . . . ,min(n− 1, p− 1):

1. Consider all p− k models that augment the predictors in Sk with
one additional predictor

2. Choose the best among these p− k models and call it Sk+1,
where best is defined having the smallest RSS

– Select a single best model from among S0, S1, S2, . . . (e.g. using
Cp, BIC, Cross-Validation, validation set, etc.)
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The Lasso



The name “lasso” was also introduced as an acronym for Least
Absolute Selection and Shrinkage Operator (Tibshirani, 1996)

The lasso finds the solution (α̂, β̂) to the optimization problem

min
β∈Rp

1

2n
‖y− 1α− Xβ‖22 + λ‖β‖1



– Typically, we first standardize the predictors X so that each
column is centered ((1/n)

∑n
i=1 xij = 0) and has unit variance

((1/n)
∑n

i=1 x
2
ij = 1)

– Without standardization, the lasso solutions would depend on
the units (e.g., feet versus meters) used to measure the
predictors. On the other hand, we typically would not
standardize if the features were measured in the same units

– For convenience, we also assume that the outcome values yi
have been centered ((1/n)

∑n
i=1 yi = 0). Centering is

convenient, since we can omit the intercept term α in the lasso
optimization, and given the solution β̂

α̂ = ȳ−
p∑

j=1

x̄jβ̂j



– Lagrange form

1

2n
min
β∈Rp
‖y− Xβ‖22 + λ‖β‖1

– Intercept term omitted (center / scale the columns of X and y)
– The coefficient profiles for the lasso are continuous and

piecewise linear over the range of λ, with knots occurring
whenever the active set changes, or the sign of the coefficients
changes
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Boosting with componentwise linear least squares

– Response and predictors are standardized to have mean zero
and unit norm

– Initialize β̂(0) = 0

– For b = 1, . . . , B
– compute the residuals r = y− Xβ̂(b−1)

– find the predictor Xj most correlated with the residuals r
– update β̂(b−1) to β̂(b) with

β̂
(b)
j = β̂

(b−1)
j + ϵ · sj

where sj is the sign of the correlation
– This is known as forward stagewise regression and converges to

the least squares solution when n > p

– Forward stagewise regression with infinitesimally small
step-sizes, i.e. ϵ→ 0, produces a set of solutions which is
approximately equivalent to the set of Lasso solutions
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Convex optimization and the elastic net



Convex function

The objective function of the ℓ1 penalty, unlike the ℓ0 penalty, is a
continuous function in the regression vector. Not only is the
objective function continuous, it is also convex.

We say that a function f : Rp 7→ R convex if for any values b1 and b2
and quantity t ∈ [0, 1] we have

f(tb1 + (1− t)b2) ≤ tf(b1) + (1− t)f(b2)

Replacing the ≤ with < for t ∈ (0, 1) yields a definition of strict
convexity.

The ℓ1-penalized objective function is in fact convex (but not strictly
convex, which makes the solutions non-linear in the yi, and there is
no closed form solution as in ridge).



Convex optimization
A convex function does not have any local minima that are not also
global minima. In other words, if the value b0 minimizes f over a
neighborhood of b0, it must also minimize f over its entire domain.

To see this, assume that b1 is any point that is not a global minima
but set b2 equal to a global minima of f. Then, for any t ∈ [0, 1), we
have

tf(b1) + (1− t)f(b2) < tf(b1) + (1− t)f(b1) = f(b1)

and by convexity this implies that

f(tb1 + (1− t)b2) < f(b1)

For any neighborhood around b1 we can find t close enough to 1
such that tb1 + (1− t)b2 is in that neighborhood, and therefore b1
cannot be a local minimum.

The lack of local optima makes it possible to optimize convex
objective functions using e.g. the coordinate descent algorithm.



Elastic net

Define the objective function f for some λ > 0 and α ∈ [0, 1] as

f(β;λ, α) =
1

2n
‖y− Xβ‖22 + λ

(
(1− α)

1

2
‖β||22 + α‖β‖1

)
and the corresponding elastic net estimator as

β̂λ,α = argmin
β

f(β;λ, α)

Setting α to 1 yields the Lasso regression and setting it to 0 the ridge
regression.

Adding a small ℓ2-penalty preserves the variable selection and
convexity properties of the ℓ1-penalized regression, while reducing
the variance of the model when X contains sets of highly correlated
variables.



Coordinate descent

Coordinate descent is a general purpose convex optimization
algorithm particularly well-suited to solving the elastic net equation.

Coordinate descent successively minimizes the objective function
along each variable. In every step all but one variable is held
constant and a value for the variable of interest is chosen to
minimize the constrained problem.

This process is applied iteratively over all of the variables until the
algorithm converges.



Writing the problem in terms of the individual values of b:

f(b) =
1

2n

n∑
i=1

(yi −
p∑

j=1

xijbj)2 + λ

p∑
j=1

{1
2
(1− α)b2j + α|bj|}

Let b̃ be a vector of candidate values of the regression vector b and
assume b̃l > 0. Then the derivative of this function with respect to bl
at b = b̃ is

∂f
∂bl
|b=b̃ = −1

n

n∑
i=1

xil(yi −
p∑
j̸=l

xijb̃j − xilb̃l) + λ((1− α)b̃l + α)

= −1

n

n∑
i=1

xil(yi − ỹ(l)i ) +
1

n

n∑
i=1

x2ilb̃l + λ(1− α)b̃l + λα

where ỹ(l)i =
∑p

j̸=l xijb̃j is the contribution of all regressors in the
model except the lth.



By setting the function to zero and solving for b̃l resulting in

b̃l =
1
n
∑n

i=1 xil(yi − ỹ(l)i )− λα
1
n
∑n

i=1 x
2
il + λ(1− α)

We can then generalize this equation using the soft-thresholding
function as

b̃l ←
Sλα(1n

∑n
i=1 xil(yi − ỹ(l)i ))

1
n
∑n

i=1 x
2
il + λ(1− α)

The algorithm updates each of the values of b̃ based on the initial
guess of a p× 1 vector of zeros.



KKT conditions

The solution must satisfy the subgradient / Karush-Kuhn-Tuker
conditions

−1

n
〈Xj, y− Xb̂〉+ λsj = 0

n∑
i=1

xij(yi −
p∑

j=1

xijb̂j) = λsj

for j = 1, . . . , p, where

sj ∈


1 if b̂j > 0

[-1,1 ] if b̂j = 0

−1 if b̂j < 0

which means that if these conditions have not been met, then our b̂
vector cannot be optimal.



Cross-validation



Maximum λ

What values of λ should we use when performing cross-validation?
Consider the case that α = 1. From the coordinate descent updates

b̃j =
1

n
Xt
jy− λ

It follows that if |Xt
jy| ≤ nλ then b̃j = 0. The smallest value of λ  for

which all b̃j are zero is therefore:

λmax = max
j∈{1,...,p}

∣∣∣∣Xt
jy
n

∣∣∣∣



Minimum CV error and the 1se rule

– lambda.min: λ that minimize the cross-validation error
– lambda.1se: largest value of lambda such that error is within 1

standard error of the minimum (one standard error rule). To
compute cross-validation ”standard errors”

se = 1√
K
sd(Err−1, . . . , Err−K)

where Err−k denotes the error incurred in predicting the
observations in the k hold-out fold, k = 1, . . . ,K.
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Degrees of freedom

– Let A(λ) = {j ∈ {1, . . . , p} : β̂j(λ) 6= 0} denotes the active set
– The degrees of freedom of the Lasso are the

df(λ) = |A(λ)|

i.e. the size of the active set



Bayesian interpretation

– A Bayesian viewpoint assumes that β has a double-exponential
(Laplace) prior distribution with mean zero and scale parameter
a function of λ

(1/2τ) exp(−‖β‖1/τ)

with τ = 1/λ

– It follows that the posterior mode for β is the lasso solution
– However, the lasso solution is not the posterior mean and, in

fact, the posterior mean does not yield a sparse coefficient
vector



Extensions of the lasso



Group Lasso

– Suppose we have a partition G1, . . . ,Gq of {1, . . . , p}
– The group Lasso penalty (Yuan and Lin, 2006) is given by

λ

q∑
k=1

mk‖βGk‖2

The multipliers mk > 0 serve to balance cases where the groups
are of very different sizes; typically we choose mk =

√
|Gk|

– This penalty encourages either an entire group G to have
β̂G = 0 or β̂j 6= 0 for all j ∈ G

– Such a property is useful when groups occur through coding
for categorical predictors or when expanding predictors using
basis functions.



Relaxed Lasso

– Originally proposed by Meinshausen (2006). We present a
simplified version.

– Suppose β̂λ is the lasso solution at λ and let Â be the active set
of indices with nonzero coefficients in β̂λ

– Let β̂LS be the coeffcients in the least squares fit, using only the
variables in Â. Let β̂LS

λ be the full-sized version of this coeffcient
vector, padded with zeros. β̂LS

λ debiases the lasso, while
maintaining its sparsity.

– Define the Relaxed Lasso

β̂RELAX
λ = γβ̂λ + (1− γ)β̂LS

λ

with γ ∈ [0, 1] is an additional tuning parameter which can be
selected by cross-validation
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