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Natural cubic spline

– A set of n points (xi, yi) can be exactly interpolated using a
natural cubic spline with the x1 < ... < xn as knots. The
interpolating natural cubic spline is unique.

– Amongst all functions on [a, b] which are twice continuously
differentiable and which interpolate the set of points (xi, yi), a
natural cubic spline with knots at the xi yields the smallest
roughness penalty ∫ b

a
(f ′′(x))2dx

– f ′′(x) is the second derivative of f with respect to x - it would be
zero if f were linear, so this measures the curvature of f at x.



Smoothing spline

– Smoothing splines circumvent the problem of knot selection by
performing regularized regression over the natural spline basis,
placing knots at all inputs x1, . . . , xn

– With inputs x1 < . . . < xn contained in an interval [a, b], the
minimiser of

f̂ = argmin
f∈C2

n∑
i=1

(yi − f(xi))2 + λ

∫ b

a
(f ′′(x))2dx

amongst all twice continuously differentiable functions on [a, b]
is given by a a natural cubic spline with knots in the unique xi



– The previous result tells us that we can choose natural cubic
spline basis B1, . . . , Bn with knots ξ1 = x1, . . . , ξn = xn and
solve

β̂λ = argmin
β

n∑
i=1

(yi −
n∑

j=1

βjBj(xi))2 + λ

∫ b

a

( n∑
j=1

βjB′′j (x)
)2

dx

to obtain the smoothing spline estimate f̂(x) =
∑n

i=1 β̂jBj(x)

– Rewriting

β̂λ = argmin
β

∥y− Bβ∥2 + λβtΩβ

where Bij = Bj(xi) and Ωjk =
∫
B′′j (x)B

′′
k(x)dx, shows the

smoothing spline problem to be a type of generalized ridge
regression problem with solution

β̂λ = (BtB+ λΩ)−1Bty



– Fitted values in Reinsch form

ŷ = B(BtB+ λΩ)−1Bty

= (In + λK)−1y

where K = (Bt)−1ΩB−1 does not depend on λ, and
S = (In + λK)−1 is the n× n smoothing matrix

– Leave-one-out cross validation

LOO =
1

n

n∑
i=1

(yi − ŷi
1− Sii

)2

– Generalized cross validation

GCV =
1

n

n∑
i=1

( yi − ŷi
1− tr(S)/n

)2

where tr(S) is the effective degrees of freedom
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smooth.spline result with λ = 0 and 6.9e-15 by LOO



Reinsch original solution

– The original Reinsch (1967) algorithm solves the constrained
optimization problem

f̂ = argmin
f∈C2

∫ b

a
(f ′′(x))2dx such that

n∑
i=1

(yi − f(xi))2 ≤ c

– The previous formulation with a Lagrange parameter on the
integral smoothing term instead of the least squares term is
equivalent

– See casl_smspline implementation in Section 2.6 of CASL



P-splines



B-spline basis

– The truncated power basis suffers from computational issues.
The B-spline basis is a re-parametrization of the truncated
power basis spanning an equivalent space

– The appearance of B-splines depends on their knot spacing, e.g.
– uniform B-splines on equidistant knots;
– non-uniform B-splines on unevenly spaced knots and repeated

boundary;
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Left plot: uniform cubic B-splines with equidistant knots

Right plot: non-uniform cubic B-splines with unevenly spaced knots
and duplicated boundary knots



B-spline basis

– B-splines can be computed as differences of truncated power
functions

– The general formula for equally-spaced knots is

Bj(x) =
(−1)M+1∆M+1fj(x,M)

hMM!

satisfying ∑
j

Bj(x) = 1

where fj(x,M) = (x− ξj)
M
+, h is is the distance between knots

and∆O is the Oth order difference with
∆fj(x,M) = fj(x,M)− fj−1(x,M),
∆2fj(x,M) = ∆(∆fj(x,M)) = fj(x,M)−2fj−1(x,M)+ fj−2(x,M)



P-splines

– There is an intermediate solution between regression and
smoothing splines, proposed more recently by Eilers and Marx
(1996)

– P-splines use a basis of (quadratic or cubic) B-splines, B,
computed on x and using equally-spaced knots. Minimize

∥y− Bβ∥2 + λ∥Dβ∥2

where D = ∆O is the matrix of Oth order differences, with
∆βj = βj − βj−1, ∆2βj = ∆(∆βj) = βj − 2βj−1 + βj−2 and so
on for higher O. Mostly O = 2 or O = 3 is used.

– Minimization leads to the system of equations

(BtB+ λDtD)β̂ = Bty
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The core idea of P-splines: a sum of B-spline basis functions, with
gradually changing heights. The blue curve shows the P-spline fit,
and the large dots the B-spline coefficients. R code in f-ps-show.R



Cross-validation

– We have that ŷ = B(BtB+ λDtD)−1Bty = Sy

–

LOO =
1

n

n∑
i=1

(yi − ŷ(−i)
i )2 =

1

n

n∑
i=1

(yi − ŷi
1− Sii

)2

–

GCV =
1

n

n∑
i=1

(yi − ŷi)2

(1− tr(S)/n)2

– We can compute the trace of R without actually computing its
diagonal, using

tr(S) = tr((BtB+ P)−1BtB) = tr(In−(BtB+ P)−1P)

where P = λDtD
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