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High-dimensional inference

– Consider the gaussian linear model

y ∼ Nn(1nβ0 + Xβ, σ2In)

with n× p design matrix X and p× 1 vector of coefficients β
– When p ≥ n, classical approaches for estimation and inference

of β cannot be directly applied
– How to perform inference on β (e.g. confidence intervals and

p-values for individual regression parameters βj, j = 1, . . . , p)
in a high-dimensional setting?



Support set

– The support set is

S = {j ∈ {1, . . . , p} : βj ̸= 0}

with cardinality s = |S|, and its complement is the null set, i.e.

N = {j ∈ {1, . . . , p} : βj = 0}

– Let Ŝ ⊆ {1, . . . , p} be an estimator of S. Then

|Ŝ ∩ N|

is the number of the wrong selections (type I errors) and

|S \ Ŝ|

is the number of wrong deselections (type II errors)



Error rates

– Define the False Discovery Proportion (FDP) by

FDP(Ŝ) = |Ŝ ∩ N|
|Ŝ|

with FDP(∅) = 0

– FamilyWise Error Rate (FWER)

P(FDP(Ŝ) > 0) = P(Ŝ ∩ N ̸= ∅)

– False Discovery Rate (FDR)

E(FDP(Ŝ))



Error control

– We would like to control the chosen error rate at level α, i.e.

P(Ŝ ∩ N ̸= ∅) ≤ α or E(FDP(Ŝ)) ≤ α

while maximizing some notion of power e.g. the average power

AvgPower =
∑

j∈S P(Ŝ ∈ j)

|S|

– We are dealing with the trade-off between type I and type II
errors, and since FWER is more stringent than FDR, i.e.

E(FDP(Ŝ)) ≤ P(Ŝ ∩ N ̸= ∅)

methods that control FWER are less powerful



Simulate data as described in Section 3.1 of Hastie et al. (2020)

Given n (number of observations), p (problem dimensions), s
(sparsity level), beta-type (pattern of sparsity), ρ (predictor
autocorrelation level), and ν (signal-to-noise ratio (SNR) level)

1. we define coefficients β ∈ Rp according to s and the beta-type;
e.g. beta-type 2: β has its first s components equal to 1, and the
rest equal to 0

2. we draw the rows of the predictor matrix X ∈ Rn×p i.i.d. from
Np(0,Σ), where Σ ∈ Rp×p has entry (i, j) equal to ρ|i−j|

(Toeplitz matrix)
3. we draw the response vector y ∈ Rn from Nn(Xβ, σ2In) with σ2

defined to meet the desired SNR level, i.e. σ2 = βtΣβ/ν

https://www.stat.cmu.edu/~ryantibs/papers/bestsubset.pdf


Lasso active set

Lasso with λ chosen by e.g. the 1-se rule

Ŝ = {j ∈ {1, . . . , p} : β̂j ̸= 0}

Simulated data with n = 200, p = 1000, s = 10, ρ = 0, ν = 2.5:

Size # Type I # Type II FDP Sensitivity
|Ŝ| |Ŝ ∩ N| |S \ Ŝ| |Ŝ ∩ N|/|Ŝ| |Ŝ ∩ S|/|S|

23 13 0 56.5% 100%



100 replications

1 2 3 4 5 6 7
Size 23 20 13 25 23 21 11

# Type I 13 10 3 15 13 11 4
# Type II 0 0 0 0 0 0 3

FDP 0.57 0.50 0.23 0.60 0.57 0.52 0.36
Sensitivity 1 1 1 1 1 1 0.7

FWER = 99%, FDR = 54.2%, AvgPower = 99.6%



Naïve two-step procedure

1. Perform the lasso in order to obtain the active set

M̂ = {j ∈ {1, . . . , p} : β̂j ̸= 0}

2. Use least squares to fit the submodel containing just the
variables in M̂, i.e. linear regression of the n× 1 response y on
the reduced n× |M̂| submatrix XM̂. Obtain

Ŝ = {j ∈ M̂ : pj ≤ α}

where pj is the p-value for testing the null hypothesis
Hj : βj = 0 in the linear model including only the selected
variables



Simulation with n = 200, p = 1000, s = 10, ρ = 0, ν = 2.5, α = 5%:

Size # Type I # Type II FDP Sensitivity
|Ŝ| |Ŝ ∩ N| |S \ Ŝ| |Ŝ ∩ N|/|Ŝ| |Ŝ ∩ S|/|S|

15 5 0 33.3% 100%

100 replications

1 2 3 4 5 6 7
Size 15 18 12 17 18 17 11

# Type I 5 8 2 7 8 7 4
# Type II 0 0 0 0 0 0 3

FDP 0.33 0.44 0.17 0.41 0.44 0.41 0.36
Sensitivity 1 1 1 1 1 1 0.7

FWER = 99%, FDR = 42.1%, AvgPower = 99.6%



j pj Selected
1 0.00 *
2 0.00 *
3 0.00 *
4 0.00 *
5 0.00 *
6 0.00 *
7 0.00 *
8 0.00 *
9 0.00 *

10 0.00 *
37 0.29
53 0.06

273 0.00 *
417 0.04 *
427 0.12
525 0.04 *
577 0.24
590 0.06
636 0.16
673 0.01 *
698 0.31
721 0.12
829 0.01 *



– The main problem with the naïve two-step procedure is that it
peeks at the data twice: once to select the variables to include
in M̂, and then again to test hypotheses associated with those
variables

– Here M̂ is a random variable (it is a function of the data), but
inference for linear model assumes it fixed (given a priori)

– A secondary problem is the multiplicity of the tests performed
– A simple idea is to use data-splitting to break up the dependence

of variable selection and hypothesis testing (Cox, 1975)



Data-split



The single-split approach (Wasserman and Roeder, 2009) splits the
data into two parts I and L of equal sizes nI = nL = n/2:

1. Use variable selection on the L portion (XL, yL) to obtain

M̂L ⊆ {1, . . . , p}

2. Use the I portion (XI, yI) for constructing p-values

pj =
{

pIj if j ∈ M̂L

1 if j /∈ M̂L

where pIj is the p-value testing Hj : βj = 0 in the linear model
including only the selected variables, i.e. based on the linear
regression of the reduced nI × 1 response yI on the reduced
nI × |M̂L| matrix XI

M̂L



3. Adjust the p-values for their multiplicity |M̂L|, by e.g.
Bonferroni

p̃j = min(|M̂L| · pj, 1), j = 1, . . . , p

4. Selected variables

S̃ = {j ∈ M̂L : p̃j ≤ α}



j pLj pIj p̃Ij Selected
1 0.00 0.08 1.00
2 0.00 0.00 0.00 *
3 0.00 0.00 0.00 *
4 0.03 0.01 0.09
6 0.00 0.00 0.00 *
8 0.00 0.00 0.01 *
9 0.16 0.00 0.00 *

10 0.00 0.00 0.00 *
37 0.03 0.38 1.00

390 0.15 0.79 1.00
398 0.01 0.21 1.00
720 0.24 0.04 0.60
721 0.02 0.82 1.00
742 0.04 0.21 1.00
824 0.02 0.24 1.00
829 0.01 0.38 1.00
943 0.15 0.66 1.00



Theorem
Assume that

1. the linear model y ∼ Nn(1β0 + Xβ, σ2I) holds

2. the variable selection procedure satisfies the screening property for
the first half of the sample, i.e.

P(M̂L ⊇ S) ≥ 1− δ

for some δ ∈ (0, 1).

3. The reduced design matrix for the second half of the sample
satisfies rank(XI

M̂L) = |M̂L|.
Then the single-split procedure yields FWER control at α against
inclusion of null predictors up to the additional (small) value δ, i.e.

P(S̃ ∩ N ̸= ∅) ≤ α+ δ



Proof.
Let E = {M̂L ⊇ S} with P(Ec) ≤ δ by assumption. If E happens, then
pIj is a valid p-value, i.e. P(pIj ≤ u|E) ≤ u for j ∈ N ∩ M̂L. We have

P(S̃ ∩ N ̸= ∅) = P(
∪

j∈M̂L∩N

{p̃j ≤ α})

= P(
∪

j∈M̂L∩N

{p̃j ≤ α}|E)P(E) + P(
∪

j∈M̂L∩N

{p̃j ≤ α}|Ec)P(Ec)

≤
[ ∑
j∈M̂L∩N

P(pIj ≤
α

|M̂L|
|E)

]
P(E) + P(

∪
j∈M̂L∩N

1{p̃j ≤ α}|Ec)P(Ec)

≤ |M̂L ∩ N| α

|M̂L|
· 1 + 1 · δ

≤ α+ δ



P-value lottery

A major problem of the single data-splitting method is that different
data splits lead to different p-values

50 random splits
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Multi-split

The multi-split approach (Meinshausen et al., 2009)

1. For b = 1, . . . , B
apply the single-split procedure (Lb, Ib) to obtain

{p̃bj , j = 1, . . . , p}

2. Aggregate the p-values as

p̄j = 2 ·median(p̃1j , . . . , p̃Bj ), j = 1, . . . , p

3. Selected predictors:

S̄ = {j ∈ {1, . . . , p} : p̄j ≤ α}
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Simultaneous confidence intervals

P(βj ∈ [L̂j, Ûj] ∀j ∈ {1, . . . , p}) ≥ 1− α

j L̂j Ûj

1 -∞ ∞
2 0.69 1.84
3 0.48 1.73
4 0.36 1.49
5 0.47 1.70
6 0.56 1.78
7 0.27 1.57
8 0.40 1.69
9 0.41 1.56

10 0.44 1.56
11 -∞ ∞
· · ·


