Stability Selection

Statistical Learning
CLAMSES - University of Milano-Bicocca

Aldo Solari

References

- Meinshausen, Buhlmann (2010). Stability selection. JRSS-B, 72:417-473
- Shah, Samworth (2013). Variable selection with error control: another look at stability selection. JRSS-B, 75:55-80.

Stability path

- The regularisation path of the lasso is

$$
\left\{\hat{\beta}_{j}(\lambda), j=1, \ldots, p, \lambda \in \Lambda\right\}
$$

- The stability path is

$$
\left\{\hat{\pi}_{j}(\lambda), j=1, \ldots, p, \lambda \in \Lambda\right\}
$$

where $\hat{\pi}_{j}(\lambda)$ is the estimated probability for the j th predictor to be selected by the lasso (λ) when randomly resampling from the data

Algorithm 1 Stability Path Algorithm with the Lasso

Require: $B \in \mathbb{N}, \Lambda$ grid, $\tau \in(0.5,1)$
1: for $b=1, \ldots, B$ do
2: \quad Randomly select $n / 2$ indices from $\{1, \ldots, n\}$;
3: \quad Perform the lasso on the $n / 2$ observations to obtain

$$
\hat{S}_{n / 2}(\lambda)=\left\{j: \hat{\beta}_{j}(\lambda) \neq 0\right\} \quad \forall \lambda \in \Lambda
$$

4: end for
5: Compute the relative selection frequencies:

$$
\hat{\pi}_{j}(\lambda)=\frac{1}{B} \sum_{b=1}^{B} \mathbb{1}\left\{j \in \hat{S}_{n / 2}(\lambda)\right\} \quad \forall \lambda \in \Lambda
$$

6: The set of stable predictors is given by

$$
\hat{S}_{\text {stab }}=\left\{j: \max _{\lambda \in \Lambda} \hat{\pi}_{j}(\lambda) \geq \tau\right\}
$$

Algorithm 2 (Complementary Pairs) Stability Selection

Require: A variable selection procedure $\hat{S}_{n}, B \in \mathbb{N}, \tau \in(0.5,1)$
1: for $b=1, \ldots, B$ do
2: \quad Split $\{1, \ldots, n\}$ into $\left(I^{2 b-1}, I^{2 b}\right)$ of size $n / 2$, and for each get

$$
\hat{S}_{n / 2}^{2 b-1} \subseteq\{1, \ldots, p\}, \quad \hat{S}_{n / 2}^{2 b} \subseteq\{1, \ldots, p\}
$$

3: end for

4: Compute the relative selection frequencies:

$$
\hat{\pi}_{j}=\frac{1}{2 B} \sum_{b=1}^{B}\left(\mathbb{1}\left\{j \in \hat{S}_{n / 2}^{2 b-1}\right\}+\mathbb{1}\left\{j \in \hat{S}_{n / 2}^{2 b}\right\}\right)
$$

5: The set of stable predictors is given by

$$
\hat{S}_{\text {stab }}=\left\{j: \hat{\pi}_{j} \geq \tau\right\}
$$

- The relative selection frequency $\hat{\pi}_{j}$ is an unbiased estimator of

$$
\pi_{j}^{n / 2}=\mathrm{P}\left(j \in \hat{S}_{n / 2}\right)
$$

but, in general, a biased estimator of

$$
\pi_{j}^{n}=\mathrm{P}\left(j \in \hat{S}_{n}\right)=\mathbb{E}\left(\mathbb{1}\left\{j \in \hat{S}_{n}\right\}\right)
$$

- The key idea of stability selection is to improve on the simple estimator $\mathbb{1}\left\{j \in \hat{S}_{n}\right\}$ of π_{j}^{n} through subsampling.
- By means of averaging involved in $\hat{S}_{\text {stab }}$, we hope that $\hat{\pi}_{j}$ will have reduced variance compared to $\mathbb{1}\left\{j \in \hat{S}_{n}\right\}$ and this increased stability will more than compensate for the bias incurred.

Theorem

Assume that

1. $\left\{\mathbb{1}\left\{j \in \hat{S}_{n / 2}\right\}, j \in N\right\}$ is exchangeable;
2. The variable selection procedure is not worse than random guessing, i.e.

$$
\frac{\mathbb{E}\left(\left|\hat{S}_{n / 2} \cap S\right|\right)}{\mathbb{E}\left(\left|\hat{S}_{n / 2} \cap N\right|\right)} \geq \frac{|S|}{|N|}
$$

Then, for $\tau \in(1 / 2,1]$

$$
\mathbb{E}\left(\left|\hat{S}_{\text {stab }} \cap N\right|\right) \leq \frac{1}{(2 \tau-1)} \frac{q^{2}}{p}
$$

where $q=\mathbb{E}\left(\left|\hat{S}_{n / 2}\right|\right)$

- The choice of the number of subsamples B is of minor importance
- It is possible to fix $q=\mathbb{E}\left(\left|\hat{S}_{n / 2}\right|\right)$ and run the variable selection procedure until it selects q variables. However, if q is too small, one would select only a subset of the signal variables as

$$
\left|\hat{S}_{\text {stab }}\right| \leq\left|\hat{S}_{n / 2}\right|=q
$$

- For example, with $p=1000, q=50$ and $\tau=0.6$ then

$$
\mathbb{E}\left(\left|\hat{S}_{\text {stab }} \cap N\right|\right) \leq 12.5
$$

